83 research outputs found

    An active fault tolerant control approach to an offshore wind turbine model

    Get PDF
    The paper proposes an observer based active fault tolerant control (AFTC) approach to a non-linear large rotor wind turbine benchmark model. A sensor fault hiding and actuator fault compensation strategy is adopted in the design. The adapted observer based AFTC system retains the well-accepted industrial controller as the baseline controller, while an extended state observer (ESO) is designed to provide estimates of system states and fault signals within a linear parameter varying (LPV) descriptor system context using linear matrix inequality (LMI). In the design, pole-placement is used as a time-domain performance specification while H∞ optimization is used to improve the closed-loop system robustness to exogenous disturbances or modelling uncertainty. Simulation results show that the proposed scheme can easily be viewed as an extension of currently used control technology, with the AFTC proving clear “added value” as a fault tolerant system, to enhance the sustainability of the wind turbine in the offshore environment

    Fault estimation and active fault tolerant control for linear parameter varying descriptor systems

    Get PDF
    Starting with the baseline controller design, this paper proposes an integrated approach of active fault tolerant control based on proportional derivative extended state observer (PDESO) for linear parameter varying descriptor systems. The PDESO can simultaneously provide the estimates of the system states, sensor faults, and actuator faults. The L₂ robust performance of the closed-loop system to bounded exogenous disturbance and bounded uncertainty is achieved by a two-step design procedure adapted from the traditional observer-based controller design. Furthermore, an LMI pole-placement region and the L₂ robustness performance are combined into a multiobjective formulation by suitably combing the appropriate LMI descriptions. A parameter-varying system example is given to illustrate the design procedure and the validity of the proposed integrated design approach

    Observer based active fault tolerant control of descriptor systems

    Get PDF
    The active fault tolerant control (AFTC) uses the information provided by fault detection and fault diagnosis (FDD) or fault estimation (FE) systems offering an opportunity to improve the safety, reliability and survivability for complex modern systems. However, in the majority of the literature the roles of FDD/FE and reconfigurable control are described as separate design issues often using a standard state space (i.e. non-descriptor) system model approach. These separate FDD/FE and reconfigurable control designs may not achieve desired stability and robustness performance when combined within a closed-loop system.This work describes a new approach to the integration of FE and fault compensation as a form of AFTC within the context of a descriptor system rather than standard state space system. The proposed descriptor system approach has an integrated controller and observer design strategy offering better design flexibility compared with the equivalent approach using a standard state space system. An extended state observer (ESO) is developed to achieve state and fault estimation based on a joint linear matrix inequality (LMI) approach to pole-placement and H∞ optimization to minimize the effects of bounded exogenous disturbance and modelling uncertainty. A novel proportional derivative (PD)-ESO is introduced to achieve enhanced estimation performance, making use of the additional derivative gain. The proposed approaches are evaluated using a common numerical example adapted from the recent literature and the simulation results demonstrate clearly the feasibility and power of the integrated estimation and control AFTC strategy. The proposed AFTC design strategy is extended to an LPV descriptor system framework as a way of dealing with the robustness and stability of the system with bounded parameter variations arising from the non-linear system, where a numerical example demonstrates the feasibility of the use of the PD-ESO for FE and compensation integrated within the AFTC system.A non-linear offshore wind turbine benchmark system is studied as an application of the proposed design strategy. The proposed AFTC scheme uses the existing industry standard wind turbine generator angular speed reference control system as a “baseline” control within the AFTC scheme. The simulation results demonstrate the added value of the new AFTC system in terms of good fault tolerance properties, compared with the existing baseline system

    A Semipersistent Plant Virus Differentially Manipulates Feeding Behaviors of Different Sexes and Biotypes of Its Whitefly Vector.

    Get PDF
    It is known that plant viruses can change the performance of their vectors. However, there have been no reports on whether or how a semipersistent plant virus manipulates the feeding behaviors of its whitefly vectors. Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus, family Closteroviridae) is an emergent plant virus in many Asian countries and is transmitted specifically by B and Q biotypes of tobacco whitefly, Bemisia tabaci (Gennadius), in a semipersistent manner. In the present study, we used electrical penetration graph (EPG) technique to investigate the effect of CCYV on the feeding behaviors of B. tabaci. The results showed that CCYV altered feeding behaviors of both biotypes and sexes of B. tabaci with different degrees. CCYV had stronger effects on feeding behaviors of Q biotype than those of B biotype, by increasing duration of phloem salivation and sap ingestion, and could differentially manipulate feeding behaviors of males and females in both biotype whiteflies, with more phloem ingestion in Q biotype males and more non-phloem probing in B biotype males than their respective females. With regard to feeding behaviors related to virus transmission, these results indicated that, when carrying CCYV, B. tabaci Q biotype plays more roles than B biotype, and males make greater contribution than females

    Long Non-coding RNA DLEU1 Promotes Cell Proliferation, Invasion, and Confers Cisplatin Resistance in Bladder Cancer by Regulating the miR-99b/HS3ST3B1 Axis

    Get PDF
    Although accumulating evidence has shown the important function of long non-coding RNAs (lncRNAs) in tumor progression and chemotherapy resistance, the role of lncRNA DLEU1 in regulating proliferation, invasion, and chemoresistance of bladder cancer (BCA) cells remains largely unknown. Here, we found that DLEU1 was upregulated in BLCA tissues and BCA patients with high DLEU1 expression exhibited a shorter survival time. Furthermore, mechanistic analysis and functional assays validated that DLEU1 induced cell proliferation, invasion, and cisplatin resistance of BCA cells by de-repressing the expression of HS3ST3B1 through sponging miR-99b. Low miR-99b and high HS3ST3B1 levels were correlated with worse prognosis in patients with BCA. Ectopic expression of HS3ST3B1 or inhibition of miR-99b reversed DLEU1 knockdown-mediated suppression of cell proliferation, invasion, and cisplatin resistance. Thus, our study revealed a novel role for the DLEU1/miR-99b/HS3ST3B1 axis in regulating proliferation, invasion, and cisplatin resistance of BCA cells

    Mechanism interference critical characterization and autonomous demodulation method of solid filling hydraulic support

    Get PDF
    Whether the self-demodulation of mechanism interference can be realized in the self-driven execution process of filling operation is the basis for the solid filling hydraulic support to achieve intelligence. Using the theoretical analysis method, taking the ZC5 160/30/50 type solid filling hydraulic support as an example, starting from the geometric and motion constraint relationship of the filling support mechanism, the orthogonal pose control index is established: the horizontal distance and vertical distance of the tamping hinge point top beam, which realizes the pose characterization of the rear top beam of the support under any working condition; The motion characteristics of the bottom-discharge conveyor of the filling support under various working condition factors were analyzed, and the orthogonal pose control index was established: the vertical distance and horizontal distance of the top beam of the bottom-discharge conveyor, which realized the pose characterization of the bottom-discharge conveyor under any working condition; Based on the pose control index of the rear top beam and the bottom-discharge conveyor, the landing position characterization index of the filling material on the coal seam floor during the discharge process is further obtained: the discharge center distance, which realizes the landing position characterization of the filling material under any working condition; the connection relationship and easy interference position of the mechanism action and pose adjustment in each stage of the filling operation process are analyzed, based on the orthogonal pose control index, the interference critical control equation of the discharge and typical collision position under any working condition is established by using the projection method; taking the tamping mechanism rotation angle and tamping cylinder stroke as the characterization of the interference critical curve under typical working conditions, it is proposed to use the three-zone distribution characteristics of “interference zone, easy interference zone, and non-interference zone” to characterize the interference critical degree, and give the demodulation path of each interference state; based on the interference critical control equation, interference three-zone distribution characteristics and the connection relationship of mechanism action and pose adjustment in the filling operation process, an interference state autonomous identification method is proposed: using angle sensor and stroke sensor to obtain the real-time rotation angle and stroke of the tamping mechanism, substituting into the interference critical equation of each easy interference position to obtain the theoretical value and interference critical curve of the tamping mechanism rotation angle or stroke in that position, judging the position of the actual value on the interference critical curve three-zone distribution diagram can realize the autonomous discrimination of interference position and state, and autonomous demodulation can be realized according to the interference three-zone distribution curve diagram; based on the interference position and interference state autonomous identification method, the interference autonomous discrimination and demodulation algorithm is designed. The research results provide new reference indicators for the pose characterization of the filling hydraulic support mechanism, provide basic criteria for the intelligent obstacle avoidance and demodulation of mechanism interference, and provide algorithm basis for the self-driven execution of the filling operation of solid intelligent filling

    An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO2 Effects on Peatland CH4 Emissions

    Get PDF
    Peatlands are one of the largest natural sources for atmospheric methane (CH4), a potent greenhouse gas. Climate warming and elevated atmospheric carbon dioxide (CO2) are two important environmental factors that have been confirmed to stimulate peatland CH4 emissions; however, the mechanisms underlying enhanced emissions remain elusive. A data-model integration approach was applied to understand the CH4 processes in a northern temperate peatland under a gradient of warming and doubled atmospheric CO2 concentration. We found that warming and elevated CO2 stimulated CH4 emissions through different mechanisms. Warming initially stimulated but then suppressed vegetative productivity while stimulating soil organic matter (SOM) mineralization and dissolved organic carbon (DOC) fermentation, which led to higher acetate production and enhanced acetoclastic and hydrogenotrophic methanogenesis. Warming also enhanced surface CH4 emissions, which combined with warming-caused decreases in CH4 solubility led to slightly lower dissolved CH4 concentrations through the soil profiles. Elevated CO2 enhanced ecosystem productivity and SOM mineralization, resulting in higher DOC and acetate concentrations. Higher DOC and acetate concentrations increased acetoclastic and hydrogenotrophic methanogenesis and led to higher dissolved CH4 concentrations and CH4 emissions. Both warming and elevated CO2 had minor impacts on CH4 oxidation. A meta-analysis of warming and elevated CO2 impacts on carbon cycling in wetlands agreed well with a majority of the modeled mechanisms. This mechanistic understanding of the stimulating impacts of warming and elevated CO2 on peatland CH4 emissions enhances our predictability on the climate-ecosystem feedback

    Hydrological Feedbacks on Peatland CH4 Emission Under Warming and Elevated CO2: A Modeling Study

    Get PDF
    Peatland carbon cycling is critical for the land–atmosphere exchange of greenhouse gases, particularly under changing environments. Warming and elevated atmospheric carbon dioxide (eCO2) concentrations directly enhance peatland methane (CH4) emission, and indirectly affect CH4 processes by altering hydrological conditions. An ecosystem model ELM-SPRUCE, the land model of the E3SM model, was used to understand the hydrological feedback mechanisms on CH4 emission in a temperate peatland under a warming gradient and eCO2 treatments. We found that the water table level was a critical regulator of hydrological feedbacks that affect peatland CH4 dynamics; the simulated water table levels dropped as warming intensified but slightly increased under eCO2. Evaporation and vegetation transpiration determined the water table level in peatland ecosystems. Although warming significantly stimulated CH4 emission, the hydrological feedbacks leading to a reduced water table mitigated the stimulating effects of warming on CH4 emission. The hydrological feedback for eCO2 effects was weak. The comparison between modeled results with data from a field experiment and a global synthesis of observations supports the model simulation of hydrological feedbacks in projecting CH4 flux under warming and eCO2. The ELM-SPRUCE model showed relatively small parameter-induced uncertainties on hydrological variables and their impacts on CH4 fluxes. A sensitivity analysis confirmed a strong hydrological feedback in the first three years and the feedback diminished after four years of warming. Hydrology-moderated warming impacts on CH4 cycling suggest that the indirect effect of warming on hydrological feedbacks is fundamental for accurately projecting peatland CH4 flux under climate warming

    Ginkgo biloba Extract in Alzheimer’s Disease: From Action Mechanisms to Medical Practice

    Get PDF
    Standardized extract from the leaves of the Ginkgo biloba tree, labeled EGb761, is one of the most popular herbal supplements. Numerous preclinical studies have shown the neuroprotective effects of EGb761 and support the notion that it may be effective in the treatment and prevention of neurodegenerative disorders such as Alzheimer’s disease (AD). Despite the preclinical promise, the clinical efficacy of this drug remains elusive. In this review, possible mechanisms underlying neuroprotective actions of EGb761 are described in detail, together with a brief discussion of the problem of studying this herb clinically to verify its efficacy in the treatment and prevention of AD. Moreover, various parameters e.g., the dosage and the permeability of the blood brain barrier (BBB), impacting the outcome of the clinical effectiveness of the extract are also discussed. Overall, the findings summarized in this review suggest that, a better understanding of the neuroprotective mechanisms of EGb761 may contribute to better understanding of the effectiveness and complexity of this herb and may also be helpful for design of therapeutic strategies in future clinical practice. Therefore, in future clinical studies, different factors that could interfere with the effect of EGb761 should be considered
    corecore