63 research outputs found

    Characterization of Dextromethorphan And Dextrorphan Uptake by a Putative Glutamic Acid Carrier and Passive Diffusion Across Brain Microvessel Endothelium

    Get PDF
    Read More: http://informahealthcare.com/doi/abs/10.3109/10717549309022764The mechanisms of uptake and transcellular passage of dextromethorphan (DM) and its major metabolite dextrorphan (DX) across the endothelial component of the blood–brain barrier have been investigated with primary cultures of bovine brain microvessel endothelial cells (BMECs). The uptake of [14C]DM and [14C]DX by BMECs was observed to be temperature-sensitive and saturable, with approximate Km's of 0.12 and 0.29 mM and Vmax's of 9.2 and 11.0 pmol/mg/min, respectively. The BMEC uptake of [14C] DM was inhibited half-maximally by approximately 0.57 mM L-glutamic acid, 0.71 mM N-methyl-d-asparatate (NMDA), and 0.99 mM DL-threo-β-hydroxyaspartic acid. The BMEC uptake of [14C]DX was inhibited half-maximally by approximately 0.48 mM L-glutamic acid, 1.50 mM NMDA, and 0.69 mM DL-threo-β-hydroxyaspartic acid. Conversely, the bidirectional passage of DM and DX across confluent BMEC monolayers occurred at a faster rate but was neither saturable nor inhibited by high concentrations of glutamic acid, NMDA, or unlabeled DM or DX. These results suggest that DM and DX are capable of interacting with a low-capacity glutamic acid-type carrier mechanism on the apical surface of BMECs. However, the net transfer of these agents across BMEC monolayers appeared to be more rapid and passive in nature

    Effects of Topography on Tree Community Structure in a Deciduous Broad-Leaved Forest in North-Central China

    Get PDF
    Topography strongly influences the compositional structure of tree communities and plays a fundamental role in classifying habitats. Here, data of topography and 16 dominant tree species abundance were collected in a fully mapped 25-ha forest plot in the Qinling Mountains of north-central China. Multivariate regression trees (MRT) were used to categorize the habitats, and habitat associations were examined using the torus-translation test. The relative contributions of topographic and spatial variables to the total community structure were also examined by variation partitioning. The results showed the inconsistency in association of species with habitats across life stages with a few exceptions. Topographic variables [a + b] explained 11% and 19% of total variance at adult and juvenile stage, respectively. In contrast, spatial factors alone [c] explained more variation than topographic factors, revealing strong seed dispersal limitation in species composition in the 25-ha forest plot. Thus, the inconsistent associations of species and habitats coupled with high portion of variation of species composition explained by topographic and spatial factors might suggest that niche process and dispersal limitation had potential influences on species assemblage in the deciduous broad-leaved forest in north-central China

    Low temperature fabrication of hydrangea-like NiCo2S4 as electrode materials for high performance supercapacitors

    Get PDF
    Hydrangea-like NiCo2S4 as electrode materials for high performance supercapacitors was synthesized by using a facile low temperature (90 °C) two-step hydrothermal technique without surfactant or template. The special hydrangea-like structure and large specific surface area (74.8 m2/g) provided plenty of electro active sites which were beneficial to superior pseudocapacitive performance of NiCo2S4. The supercapacitors performance of NiCo2S4 was investigated by a three-electrode system. NiCo2S4 exhibited high specific capacitance with 1475 F g−1 at a current density of 3 A g−1, and a fairly high rate capacity with 1152 F g−1 at 20 A g−1. These results indicate that low temperature hydrothermal is a very promising method to prepare electrode materials for supercapacitors

    Suspension and Measurement of Graphene and Bi2Se3 Atomic Membranes

    Full text link
    Coupling high quality, suspended atomic membranes to specialized electrodes enables investigation of many novel phenomena, such as spin or Cooper pair transport in these two dimensional systems. However, many electrode materials are not stable in acids that are used to dissolve underlying substrates. Here we present a versatile and powerful multi-level lithographical technique to suspend atomic membranes, which can be applied to the vast majority of substrate, membrane and electrode materials. Using this technique, we fabricated suspended graphene devices with Al electrodes and mobility of 5500 cm^2/Vs. We also demonstrate, for the first time, fabrication and measurement of a free-standing thin Bi2Se3 membrane, which has low contact resistance to electrodes and a mobility of >~500 cm^2/Vs

    Genome-wide analysis and identification of stress-responsive genes of the CCCH zinc finger family in Capsicum annuum L.

    Get PDF
    The CCCH zinc finger gene family encodes a class of proteins that can bind to both DNA and RNA, and an increasing number of studies have demonstrated that the CCCH gene family plays a key role in growth and development and responses to environmental stress. Here, we identified 57 CCCH genes in the pepper (Capsicum annuum L.) genome and explored the evolution and function of the CCCH gene family in C. annuum. Substantial variation was observed in the structure of these CCCH genes, and the number of exons ranged from one to fourteen. Analysis of gene duplication events revealed that segmental duplication was the main driver of gene expansion in the CCCH gene family in pepper. We found that the expression of CCCH genes was significantly up-regulated during the response to biotic and abiotic stress, especially cold and heat stress, indicating that CCCH genes play key roles in stress responses. Our results provide new information on CCCH genes in pepper and will aid future studies of the evolution, inheritance, and function of CCCH zinc finger genes in pepper

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips

    No full text
    The impact of converter control strategies on the drive train of wind turbines during voltage dips is investigated in this paper using a full electromechanical model. Aerodynamics and tower vibration are taken into consideration by means of a simulation program, named FAST. Detailed gearbox and electrical subsystems are represented in MATLAB. The dynamic response of electromagnetic torque and its impact on the mechanical variables are the concern in this paper and the response of electrical variables is less discussed. From the mechanical aspects, the effect of rising power recovery speed and unsymmetrical voltage dips are analyzed on the basis of the dynamic response of the high-speed shaft (HSS). A comparison of the impact on the drive train is made for two converter control strategies during small voltage dips. Through the analysis of torque, speed and tower vibration, the results indicate that both power recovery speed and the sudden torque sag have a significant impact on drive trains, and the effects depend on the different control strategies. Moreover, resonance might be excited on the drive train by an unbalanced voltage

    21-aminosteroid and 2-(aminomethyl)chromans inhibition of arachidonic acid-induced lipid peroxidation and permeability enhancement in bovine brain microvessel endothelial cell monolayers

    No full text
    Selected 21-aminosteroids (U74500A, U74006F, and U74389G) and a 2-(aminomethyl)chromans (U78517F) were tested for their efficacy in preventing arachidonate-induced lipid peroxidation and permeability alterations in brain microvessel endothelial cells (BMECs). The 21-aminosteroids and 2-(aminomethyl)chromans were effective in varying degrees in inhibiting (U74500A = U78517F> U74006F = U74389G) concentration- and time-dependent arachidonate-induced thiobarbituric acid reactive substances (TBARS) production by BMECs. Arachidonate produced a corresponding concentration-dependent increase in BMEC monolayer permeability to the membrane impermeant marker, sucrose. Pretreatment of BMEC monolayers with either the 21-aminosteroids or the 2-(aminomethyl)chromans completely blocked the arachidonate-induced increase in permeability to sucrose. Our results demonstrated that these membrane-associating antioxidants were particularly effective in preventing both arachidonic acid-induced lipid peroxidation and permeability changes in BMEC monolayers. However, concentrations of some antioxidants that only partially inhibited TBARS production, completely inhibited the arachidonic acid-induced enhancement in BMEC monolayer permeability. Therefore, arachidonic acid-induced effects on BMEC permeability were likely due in part to both lipid peroxidation and direct or indirect effects of the fatty acid on membrane integrity. This study provides further support for the application of primary cultures of BMECs as a useful in vitro system to evalulate mechanisms through which mediators of disease or injury states compromise blood-brain barrier integrity

    Restorative Effects of Park Visiting on Physiology, Psychology, and Society and the Factors Influencing Park Visiting

    No full text
    Park visits are beneficial for people’s physical and psychological health, as well as for the development of social relationships. This study investigated the degree of recovery of physical, psychological, and social aspects of residents in different types of parks and the influence of socio-demographic factors, personal factors, residential space attributes, and park characteristics on park visitation. The results show that tourists visiting urban parks have higher physiological and social recovery than those visiting suburban parks and that there are significant differences. Physical exercise, rest and relaxation, and spending time with family and children were the three most prevalent factors influencing park visits, while time constraints were the most important reason why residents failed to use parks. Socio demographics, residential spatial attributes, individual variables, and park characteristics explained 13.6%, 16.7%, 4.6%, and 2.9% of the total variance in park visit frequency, respectively. Residential green space, age, children under age seven, time spent in residential green space, willingness to spend time in nature, greenery, maintenance, and amenities were positively associated with park use. Income, education, home price, and distance from home to the park were negatively associated with park use. These findings have implications for park management and for future research
    • …
    corecore