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The CCCH zinc finger gene family encodes a class of proteins that can bind to

both DNA and RNA, and an increasing number of studies have demonstrated that

the CCCH gene family plays a key role in growth and development and

responses to environmental stress. Here, we identified 57 CCCH genes in the

pepper (Capsicum annuum L.) genome and explored the evolution and function

of the CCCH gene family in C. annuum. Substantial variation was observed in the

structure of these CCCH genes, and the number of exons ranged from one to

fourteen. Analysis of gene duplication events revealed that segmental duplication

was the main driver of gene expansion in the CCCH gene family in pepper. We

found that the expression of CCCH genes was significantly up-regulated during

the response to biotic and abiotic stress, especially cold and heat stress,

indicating that CCCH genes play key roles in stress responses. Our results

provide new information on CCCH genes in pepper and will aid future studies

of the evolution, inheritance, and function of CCCH zinc finger genes in pepper.
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Introduction

Zinc finger proteins (ZFPs), which are named for their ability to bind zinc to form a

stable finger-like structure, are sequence-specific transcription factors that usually contain

varying numbers of cysteine (Cys) and histidine (His) residues. Cys and His are used to

chelate zinc ions to form a zinc finger structure, which can recognize and bind to DNA
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(Hall, 2005). Zinc finger proteins are also associated with the

metabolism of different types of RNAs in organisms (Hall, 2005)

and can specifically bind to DNA, RNA, and DNA–RNA complexes

to regulate gene expression. Several gene families have been

identified in plants based on their function and structure,

including the RING finger (Freemont, 1993; Kosarev et al., 2002),

CCCH (Li et al., 2001), DOF (Lijavetzky et al., 2003), WRKY

(Zhang and Wang, 2005), ERF (Nakano et al., 2006), and LIM

(Arnaud et al., 2007) families. Zinc finger protein motifs can be

divided into different types according to the number of conserved

Cys and His residues and the spacing between these residues, such

as C2H2, C8, C6, C3HC4, C2HC5, C4, C4HC3, and CCCH (Berg

and Shi, 1996; Takatsuji, 1998; Moore and Ullman, 2003; Schumann

et al., 2007). CCCH zinc finger proteins generally contain at least

one zinc finger motif. Three Cys and one His residue are the most

important components of this motif. The common sequence of the

CCCH motif can be defined as C-X4-15-C-X4-6C-X3-4-H (where X

stands for any amino acid, numbers indicate the number of amino

acids, C is Cys, and H is His), and C-X7-8-C-X5-C-X3-H is the

largest sequence among CCCH proteins (Wang et al., 2008).

CCCH zinc finger proteins are involved in plant development,

adaptation, hormonal regulation, and the regulation of processes

related to physiological adversity, especially responses to biotic and

abiotic stress. In Arabidopsis, AtTZF1, which consists of two zinc

finger motifs separated by 18 amino acids, is a CCCH-type zinc

finger protein (Iuchi and Kuldell, 2005). Overexpression of AtTZF1

enhances the tolerance of Arabidopsis thaliana to cold and drought

stress and affects the growth and stress responses mediated by

abscisic acid (ABA) and gibberellic acid (GA) (Lin et al., 2011). The

expression patterns of AtTZF1, AtTZF2, and AtTZF3 are similar

(Lee et al., 2012). AtC3H49/AtTZF3 and AtC3H20/AtTZF2 can

regulate growth rate, plant size, leaf and flower morphology, as

well as aging and lifespan. Overexpression of these two genes can

attenuate transpiration, enhance drought tolerance, alter growth

patterns, and delay senescence (Lee et al., 2012). In addition, the

CCCH zinc finger proteins HUA1 and HUA2 play a role in

AGAMOUS pre-mRNA processing and in floral reproductive

organ identity (Li et al., 2001; Cheng et al., 2003). In rice,

OsTZF1 improves stress tolerance by regulating the RNA

metabolism of stress-responsive genes (Jan et al., 2013). GhZFP1

in cotton contains two typical zinc finger motifs (C-X8-C-X5-C-X3-

H and C-X5-C-X4-C-X3-H) that improve drought and disease

resistance in transgenic tobacco (Guo et al., 2009). The

overexpression of GmZF351 in transgenic soybeans activates lipid

biosynthesis genes, accelerates the accumulation of seed oil, and

thus increases the seed oil content (Li et al., 2017). In cucumber,

CsSEF1 encodes protein containing three conserved zinc finger

motifs, two of which are CCCH motifs. The expression of CsSEF1

is up-regulated in leaves and flowers; it plays a role in later

developmental stages after embryogenesis and the signal

transduction pathway of fruits from photoassimilate limitation to

the sink organs (Grabowska et al., 2009; Tazuke and Asayama,

2013). In pepper, the CCCH zinc finger protein CaC3H14 regulates

antagonistic interactions between salicylic acid (SA) and jasmonic

acid (JA)/ethylene (ET) signaling, which enhances the resistance of

plants to Ralstonia solanacearum infection (Qiu et al., 2018).
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A total of 68, 67, 68, 91, 34, 62, 80, 89, 103, 116, 31, and 86

CCCH zinc finger family genes have been identified in Arabidopsis

(Wang et al., 2008), rice (Wang et al., 2008), maize (Peng et al.,

2012), poplar (Chai et al., 2012), Medicago truncatula (Zhang et al.,

2013), citrus (Liu et al., 2014), tomato (Xu, 2014), banana

(Mazumdar et al., 2017), cabbage (Brassica rapa) (Pi et al., 2018),

soybean (Hu and Zuo, 2021), rose (Li et al., 2021), and tobacco

(Tang C. et al., 2022), respectively. Although CCCH zinc finger

proteins play an important role in many aspects of plant growth

and development, no systematic studies have been conducted to

analyze and identify members of the CCCH gene family in pepper

to date.

Pepper has the highest vitamin C content among all vegetables,

which can promote appetite and improve digestion. Whole-genome

sequencing and bioinformatics analysis can be used to identify and

analyze CCCH zinc finger genes involved in the growth and

development, metabolism, and adaptation to stress in pepper

plants (Kim et al., 2014; Qin et al., 2014). Here, we identified 57

CCCH zinc finger genes in the pepper genome. We also

systematically analyzed the phylogenetic structure, domains,

conserved motifs, chromosome localization, duplication events,

collinearity, and tissue-specific expression patterns of these

CCCH zinc finger genes, and this provided insights into the roles

of CCCH gene family members in the growth and development of

pepper plants. Finally, the published RNA sequencing (RNA-seq)

data were used to investigate the expression of CCCH genes in

different tissues, such as the roots, stems, and leaves, and the

expression patterns of the genes were validated using quantitative

real-time polymerase chain reaction (qRT-PCR). These results

provide new insights that will aid future studies of the functions

of candidate genes involved in the growth, development,

adaptation, hormone regulation, and stress physiology of

pepper plants.
Materials and methods

Identification and characterization of
CCCH zinc finger family members in
pepper

In this study, we used genomic data from Capsicum annuum cv.

CM334. First, we downloaded amino acid sequences for all

Capsicum proteins from the Phytozome database1 (Tuskan et al.,

2006; Goodstein et al., 2012) and amino acid sequences for CCCH

(PF00642, Zinc finger C-X8-C-X5-C-X3-H type, and similar

sequences) from the Pfam database2 (El-Gebali et al., 2019). The

CCCH motif was used to retrieve the amino acid sequence of

peppers in hmmsearch3 with a threshold of E-value < 1 × 10-5. All

the obtained protein sequences were submitted to the Pfam
frontiersin.org

https://phytozome-next.jgi.doe.gov
http://pfam.xfam.org/
http://www.hmmer.org/
https://doi.org/10.3389/fpls.2023.1189038
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2023.1189038
database and SMART domain search database3 to confirm the

structural integrity of the zf_CCCH domain. Furthermore, we

made use of the Pfam2 and SMART4 databases to clarify the

structural integrity of the ZF_CCCH domain (Schultz et al.,

2000). We extracted sequences of the conserved domains from

the identified pepper CCCH proteins. We used the ExPASy tool5

(Gasteiger et al., 2005) to calculate the number of amino acids,

isoelectric point (pI), molecular weight (Mw), and other physical

and chemical properties of the zinc finger CCCH protein sequences.
Classification and sequence analysis of the
CCCH genes

We downloaded amino acid sequences for pepper, tomato, and

rice from the Phytozome database1. Arabidopsis CCCH zinc finger

genes were identified from the Arabidopsis information resource

website6. Sequences were aligned using the neighbor-joining

method, and the evolutionary tree was constructed in MEGA 11

software (Kumar et al., 2018). Branch support was tested by

performing 1,000 bootstrap replications. The phylogenetic tree

was uploaded in Newick format to the EvolView web server7 to

visualize the tree. The subfamily classification of the Capsicum

CCCH gene family was based on a previously published

classification for Arabidopsis thaliana (Wang et al., 2008).

MCScanX8 was used to characterize syntenic relationships among

CCCH genes in Arabidopsis, tomato, and pepper.
Gene structure and conserved motif
analysis

We downloaded genome sequences and coding sequences from

the Phytozome database1 to analyze the structure of CCCH gene

family members. The structure of the CCCH genes was plotted

using TBtools (Chen et al., 2020). MEME Suite Version 5.4.19 was

used to identify the conserved motifs of CCCH gene family

members in pepper, with the maximum motif search number set

to 10, and other parameters set to their default values. Any

repetitions were considered a motif position that was distributed

throughout the sequence (Bailey et al., 2009).
4 http://smart.embl.de/smart/batch.pl

5 http://web.expasy.org/

6 https://www.arabidopsis.org/

7 http://www.evolgenius.info/evolview/

8 https://github.com/wyp1125/MCScanX

9 https://meme-suite.org/meme/index.html
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Chromosome location and collinearity
analysis

Detailed chromosomal mapping was obtained from GFF

genomic files downloaded from the Phytozome database1 to

visualize the chromosomal distribution of the CCCH genes in

pepper in TBtools (Chen et al., 2020). We also identified tandem

duplication events in CCCH family genes using MCScanX in

TBtools. MCScanX in TBtools and BLASTP searches were used to

identify the segmental duplication events of CCCH genes in pepper

and clarify collinearity relationships between genes in different

species (Wang et al., 2012; Chen et al., 2020). The non-

synonymous (Ka) and synonymous (Ks) substitutions between

gene pairs was calculated by using TBtools.
Analysis of CCCH gene expression by RNA-
seq under different conditions

We analyzed the expression profiles of pepper CCCH zinc

finger genes in different tissues, under different types of biotic

stress and abiotic stress, and in the presence of different

phytohormones by downloading the following RNA-seq datasets

from the National Center for Biotechnology Information (NCBI)

Gene Expression Omnibus10: flower, root, stem, placenta, and

pericarp (stage 1, 2, and 3) of pepper plants during the mature

green (MG) stage, breaker (B) stage, and 5 and 10 days after the

breaker stage (BioProject ID: PRJNA223222); 30 min, 4 h, 1 day, 2

days, and 3 days after infection with PepMoV and TMV (BioProject

ID: PRJNA223222); 1, 3, 6, 12, and 24 h under cold, heat, drought,

and salt stress (BioProject ID: PRJNA525913); and 1, 3, 6, 12, and

24 h after MeJA, SA, ET, and ABA treatment (BioProject ID.

PRJNA634831) (Kim et al., 2014; Kang et al., 2020; Lee et al.,

2020). The fragments per kilobase of exon model per million

mapped reads (FPKM) values were calculated using Hisat2

(v2.0.5) and Sringtie (v2.1.7) software with the following formula:

log(FPKM+1). These data were then visualized using the

‘pheatmap’ package in R software.
Stress treatments and collection of
materials

In this experiment, gene expression levels of CCCH genes were

detected using the pepper cultivar CM334. All pepper plants were

sown and grown under greenhouse conditions (16 h light/8 h dark,

25-28°C). When peppers had six true leaves, the experimental groups

were subjected to cold treatment (16 h light/8 h dark, 10°C) and

heat treatment (16 h light/8 h dark, 40°C) in the incubator, and the

leaves were collected at 0, 3, 6, 12, 24, and 72 h after the treatment.

Three replicates were collected from three different plants,

immediately frozen in liquid nitrogen, and then stored in a -80°

C refrigerator.
10 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
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qRT-PCR verification

The RNA sample was extracted using an RNAprep Pure Plant

Plus Kit (Tiangen) according to the manufacturer’s instructions.

The DNAase-treated RNA was reverse-transcribed with M-MLV

(RNase H-) reverse transcriptase. qRT-PCR was performed using a

CFX96TM Real-Time system (Applied Biosystems). Primers (20-24

bp) were designed using the Primer-BLAST tool in NCBI, and the

amplicon lengths were 80-220 bp (Supplementary Table 1). All

settings were set to their default values. Three technical replicates

were performed for each gene, and UBI3 was used as the internal

reference gene. The total volume of each reaction was 20 µL, which

consisted of 2 µL of cDNA, 1 µL of gene-specific primers, 7 µL of

ddH2O, and 10 µL of 2× ChamQ Universal SYBR qPCRMaster Mix

reagent. The thermal cycling conditions were as follows: 95°C for 10

min, followed by 40 cycles at 95°C for 15 s and 60°C for 1 min. At

the end of the cycle, a solubility-free curve was generated to analyze

the expression of each gene tested.
Results

Identification and characterization of
CCCH transcription factor family members
in pepper

In this study, 57 CCCH genes were identified from theC. annuum

cv. CM334 genome using the Hidden Markov Model of LEA against

the genomedatabase ofC. annuum. TheseCCCHgeneswere renamed

fromPEPTY1 toPEPTY57 according to their order on chromosome1-

12 (Supplementary Table 2). All identified CCCH genes encoded

proteins ranging from 295 to 1015 amino acids, and their predicted

isoelectric points (pI) ranged from 4.7 to 9.39. To investigate the

sequence characteristics of the most common CCCH motifs in the

pepperCCCHzinc finger proteins, we extracted amino acid sequences

from CCCH conserved regions (Thompson et al., 1997). The CCCH

domain mainly consisted of a triple cysteine and a histidine, and the

following motif was commonly observed (C-X7-8-C-X5-C-X3-H)

(Supplementary Figure 1).
Phylogenetic tree and sequence structure
analysis

We constructed a phylogenetic tree using the entire amino acid

sequence of each member of pepper, Arabidopsis, tomato, and rice

to explore the evolutionary relationships among CCCH zinc finger

genes. As shown in Figure 1, the pepper CCCH zinc finger genes

were divided into 12 groups based on previous studies of

Arabidopsis. The number of CCCH zinc finger genes in each

group was uneven. Group XII was the largest (13 CCCH zinc

finger genes), followed by Group I (8 CCCH zinc finger genes) and

Group II, VII, and VIII (each with 2 CCCH zinc finger genes).

Group III, IV, V, VI, IX, X, and XI have 3, 4, 5, 3, 3, 6, and 6 CCCH

zinc finger genes, respectively.
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We performed a structure analysis of the 57 CCCH zinc finger

genes in pepper. All the CCCH genes had introns and exons, but

they varied greatly in size and number. The number of exons ranged

from 1 to 14 (Supplementary Table 3). Most of the genes had less

than 10 exons. The average number of exons per gene was 5.4.

Genes in Group VI and VII both had two exons, and genes in

Group XII contained only one exon. However, genes in Group VIII

had 10 exons. Subsequently, the conserved motifs of the CCCH

genes in pepper were identified using the online MEME suite

program. Ten conserved motifs were detected, ranging from 6 to

50 amino acids in length (Figure 2; Supplementary Table 3).

Unsurprisingly, the structure of the genes in the same subclade

was similar. The five conserved motifs 1, 5, 6, 7, and 8, were all

found in Group I. Motif 5, 7, and 8 had the C-X8-C-X5-C-X3-H

structure. Motif 4 was only present in Group X, motif 5 was widely

present in Group V and VI, motif 9 was only present in Group XII,

and motif 10 (C-X7-C-X5-C-X3-H) was only present in Group XI.

Most genes in the same branch had similar conserved motif

compositions and structures, which suggests that they were

functionally similar.
Chromosomal locations and duplications
of CCCH zinc finger genes in pepper

Using the pepper genome annotation information and TBtools

(Tuskan et al., 2006; Chen et al., 2020), we characterized the

chromosomal distribution of CCCH zinc finger genes. A total of

55 of the 57 CCCH zinc finger genes identified could be mapped on

chromosomes; PEPTY56 and PEPTY57 were the two genes that

could not be mapped. As shown in Figure 3, these 55 CCCH genes

were unevenly distributed across the 12 chromosomes, and the

number of genes on each chromosome was not related to

chromosome size. For example, the largest chromosome (Chr 01)

contained seven CCCH genes; however, the chromosome

containing the most genes was Chr 11, which had eight CCCH

genes. Chr 05 and 12 had only two CCCH genes, which was the

same number of CCCH genes contained on the shortest

chromosome (Chr 08).

Next, we identified tandem duplication events using the

Multiple Collinearity Scan toolkit (MCScanX) in TBtools. No

tandem duplication events were identified. Thus, we identified

segmental duplication events using MCScanX in TBtools and

BLASTP searches (Wang et al., 2012; Chen et al., 2020). A total

of 5 segmentally duplicated gene pairs were detected, and these were

detected across nine chromosomes (Figure 4). On chromosomes 10,

2 pairs of genes (PEPTY42/PEPTY45 and PEPTY43/PEPTY44) on

the same chromosomes appear to be products of segmental

duplication events. Segmental duplication events were not

detected on Chr 01, 04, 07, 09, and 12. These findings indicate

that segmental duplication events appear to have played a key role

in shaping the diversity of CCCH genes in pepper.

We also investigated collinearity relationships between pepper

CCCH genes and associated genes from Arabidopsis and Solanum

lycopersicum to identify homologous genes. Collinearity

relationships were observed between 14 pepper genes and 20
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Arabidopsis genes and between 40 pepper genes and 42 tomato

genes. A total of 21 pairs of homologous genes were identified between

pepper and Arabidopsis, and 47 pairs of homologous genes were

identified between pepper and tomato (Supplementary Figure 3).

The logarithm of homologous genes with tomato was twice that of

homologous genes with Arabidopsis; and this is likely because the
Frontiers in Plant Science 05
closer phylogenetic relationship between pepper and tomato (both in

the familySolanaceae) thanbetweenpepper andArabidopsis. Toassess

the selective constraint pressure of gene pairs, Ka/Ks calculations were

performed in TBtools (Supplementary Table 4). Most gene pairs have

Ka/Ks ratios below 1, indicating that purification selection may have

been undertaken during evolution.
FIGURE 1

Evolutionary tree of CCCH genes in Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, and Capsicum annuum. The different shades of color
correspond to different subgroups.
FIGURE 2

Protein motifs of the CCCH gene family in pepper. The colorful boxes delineate different motifs. The clustering was performed according to the
results of the phylogenetic analysis.
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Expression analysis of PEPTY genes in
different pepper tissues

We characterized the expression of pepper CCCH genes in five

tissues: flower, root, stem, placenta, and pericarp tissue (Figure 5;

Supplementary Table 5). PEPTY24 was expressed at high levels in

flowers and at low levels in the roots and stems; PEPTY12 and

PEPTY46 were expressed at high levels in stems, but their

expression gradually decreased in the roots and flowers as

development advanced. PEPTY29 was most highly expressed in
Frontiers in Plant Science 06
the flowers, followed by the roots and stems. In placenta period, the

expression of PEPTY10 gradually increased with developmental

stage. The expression of PEPTY30 was the highest in the initial

breaker stage. The expression of PEPTY35 was up-regulated at the

early developmental stage in the placenta and was down-regulated

at the breaker stage. In pericarp period, the expression of PEPTY10

was significantly up-regulated at day 10 of the breaker stage. The

expression of PEPTY2 was high at stage 1 in both the placenta and

pericarp period (PL1 and PR1) and decreased thereafter. The

expression of CCCH might vary among organs and at different
FIGURE 3

Chromosomal distribution of CCCH genes in pepper. Chr01–12 indicate chromosomes 01–12. Bands on the chromosomes indicate gene density.
FIGURE 4

Collinearity analysis of the CCCH gene family in pepper. Chromosomes 01–12 are represented by yellow rectangles. The gray lines indicate syntenic
blocks in the pepper genome, and the red lines between chromosomes delineate segmentally duplicated gene pairs.The outermost heatmap and
lines represent gene density on the chromosomes.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1189038
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2023.1189038
growth and developmental stages. Some of these genes such as

PEPTY24 and PEPTY30 are likely involved in the growth and

development of pepper.
Expression analysis of PEPTY genes under
different stress conditions and
phytohormone treatments

Analysis of the relative transcript abundance of PEPTY genes

under different types of abiotic stress revealed that the expression of

many of these genes was significantly up-regulated under cold, heat,

drought (D-mannitol) and salt (sodium chloride, NaCl) stress
Frontiers in Plant Science 07
(Figure 6; Supplementary Table 5). The expression of PEPTY2,

PEPTY5, PEPTY7, PEPTY8, PEPTY11, PEPTY16, PEPTY36,

PEPTY45, and PEPTY57 was up-regulated under cold stress. The

expression of PEPTY4, PEPTY9, PEPTY26, PEPTY32, PEPTY34,

PEPTY42, PEPTY51, and PEPTY52 was significantly up-regulated at

all timepoints under heat stress. The expressionofPEPTY6, PEPTY31,

PEPTY32, andPEPTY48washighest at 12, 6, 24, and 12h, respectively.

By contrast, the expression of PEPTY14, PEPTY30, PEPTY40, and

PEPTY46 was up-regulated at 24, 72, 24, and 72 h, respectively, under

salt stress. Under drought stress, the expression of PEPTY5, PEPTY10,

PEPTY14, PEPTY23, PEPTY39, and PEPTY40 was up-regulated.

The expression of CCCH genes after treatment with two viruses

was performed to clarify their responses to biotic stress (Figure 7;
FIGURE 5

Hierarchical clustering of expression profiles of pepper CCCH genes in different organs. The heatmap was constructed using the ‘pheatmap’
package in R software, and the fragments per kilobase of exon model per million mapped reads (FPKM) values of the CCCH genes were converted
to log(FPKM+1) values. The different tissues included flower, root, stem, placenta (PL), and pericarp (PR). MG denotes mature green, and B denotes
breaker. 1, 2, and 3 indicate stage. 5 and 10 indicate days. Red indicates a high relative abundance of transcripts. Green indicates a low relative
abundance of transcripts.
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SupplementaryTable 5). The expressionofPEPTY22 followingpepper

mottle virus (PepMoV) treatment was highest 30 min post-treatment

and decreased thereafter. The expression of most genes, such as

PEPTY8, PEPTY11, and PEPTY54, was up-regulated 4 h post-

treatment. By contrast, the expression of PEPTY22 was significantly

up-regulated 30minafter treatmentwith tobaccomosaic virus (TMV),

which was consistent with its response to PepMoV treatment. The

expression of PEPTY4 and PEPTY46 was high 4 h after TMV

treatment. In addition, the expression of PEPTY20, PEPTY28,

PEPTY30, PEPTY40, and PEPTY53 was high 2 days after TMV

treatment. The expression of PEPTY25 and PEPTY33 was high 3

days after TMV treatment. The responses of most CCCH genes were

more pronounced to TMV treatment than to PepMoV treatment.

Ultimately, the expression profiles of CCCH genes were further

analyzed under treatment with four phytohormones. The results are
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shown in Figure 8. The expression of PEPTY8, PEPTY14, PEPTY22,

PEPTY35, PEPTY44, PEPTY55, and PEPTY56 was increased after

methyl jasmonate (MeJA) treatment. The expression of 13 genes

(PEPTY4, PEPTY13, PEPTY15, PEPTY26, PEPTY27, PEPTY28,

PEPTY34, PEPTY35, PEPTY41, PEPTY42, PEPTY43, PEPTY53, and

PEPTY56) increased after SA treatment. The expression of PEPTY35,

PEPTY41, PEPTY42, PEPTY43, PEPTY53, and PEPTY56 was up-

regulated after SA treatment. The expression of PEPTY37 significantly

increased 3 h after ET treatment. This gene was not expressed in the

other treatments or the control. However, the expression of PEPTY9,

PEPTY11, PEPTY20, PEPTY21, and PEPTY49 was down-regulated.

The expressionofPEPTY21 andPEPTY43wasup-regulated afterABA

treatment, especially at 12 h, and the expression of PEPTY46wasmore

significantly up-regulated at 24 h. These results suggest that CCCH

genes play a role in the response to phytohormones.
FIGURE 6

Expression profiles of pepper CCCH genes under different types of abiotic stress. Abiotic stresses included cold, heat, drought (D-mannitol), and salt
(NaCl). Time points include 1, 3, 6, 12, and 24 h. The control group is indicated by Abio.mock labels. Red indicates a high relative abundance of
transcripts. Green indicates a low relative abundance of transcripts.
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qRT-PCR validation of the CCCH genes
under cold and heat stress

We conducted qRT-PCR analysis on 5 genes that were

significantly up-regulated under cold treatment and 7 genes with

expression patterns that varied under heat treatment in the heat map

(Figure 9). Under cold stress, the expression of four genes (PEPTY12,

PEPTY16, PEPTY36, and PEPTY57) peaked at 72 h, whereas the

expression of PEPTY45 peaked at 24 h. The expression of all these

genes did not significantly differ from that of the control under cold

treatment in the early stage; however, at 72 h, the expression of genes

under cold treatment was at least two-fold higher than that of genes

in the control group. A similar pattern was observed for PEPTY4,

PEPTY9, PEPTY26, PEPTY27, PEPTY34, PEPTY51, and PEPTY52

under heat treatment, and the significance of differences was even
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more pronounced. The expression of EPTY4, PEPTY9, PEPTY27,

PEPTY34, PEPTY51, and PEPTY52 peaked at 72 h, whereas the

expression of PEPTY26 peaked at 24 h. Differences in the expression

of PEPTY4, PEPTY9, and PEPTY51 between the heat treatment and

control group gradually increased over time.
Discussion

C. annuum is one of the most widely grown solanaceous

vegetables worldwide and capsaicin produced from seed of C.

annuum is an economically important spice, medicine, vegetable,

and biopesticide. However, previous studies have shown that

pepper plants are highly sensitive to biotic and abiotic stresses,

such as pathogens, drought, cold, and heat (Kim et al., 2014; Kang
FIGURE 7

Expression profiles of pepper CCCH genes under different types of biotic stress. Biotic stresses included pepper mottle virus (PepMoV) and tobacco
mosaic virus (TMV). Time points include 30 min, 4 h, 1 d, 2 d, and 3 d. The control group is indicated by mock labels. Red indicates high relative
abundance of transcripts. Green indicates low relative abundance of transcripts.
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et al., 2020; Lee et al., 2020). CCCH proteins have been identified in

plants. These proteins are rather unusual in that they can regulate

the expression of genes by binding to mRNA in addition to DNA

(Kim et al., 2014; Qin et al., 2014). Functional analyses of CCCH

genes in Arabidopsis, rice, maize, poplar, alfalfa (Medicago

truncatula), citrus, tomato, banana, cabbage, soybean, rose,

tobacco, and other plants have been conducted (Wang et al.,

2008; Chai et al., 2012; Peng et al., 2012; Zhang et al., 2013; Liu

et al., 2014; Xu, 2014; Mazumdar et al., 2017; Pi et al., 2018; Hu and

Zuo, 2021; Li et al., 2021; Tang C. et al., 2022).

We identified 57 CCCH zinc finger genes in the genome of C.

annuum cv. CM334. A total of 80 CCCH genes have been identified

in tomato belonging to (Xu, 2014), which is also a member of the

family Solanaceae. We searched for CCCH genes in the C. annuum

L. Zunla-1 genome. However, this species only had 69 CCCH genes
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(Supplementary Table 6), which was lower than in tomato. The

CCCH genes in CM334 could be divided into 12 subfamilies, and

Group III and VIII genes were only present in pepper and tomato,

but not in Arabidopsis thaliana and rice (Figure 1). These

subfamilies are likely unique to the Solanaceae family.

Structural analysis of the CCCH genes revealed that the CCCH

motifs are highly conserved, motif type and motif position were

highly similar within each subfamily, but motif type and motif

position varied among most subfamilies. The similarity and

specificity within and between subfamilies, respectively, indicated

that genes in the same subfamily may have similar functions, and

genes in different subclades may perform different functions. No

motifs in PEPTY35 were in Group IX, and 56.1% of pepper CCCH

genes had at least two motifs. The main structures present were C-

X5-C-X4-C-X3-H and C-X7-8-C-X5-C-X3-H.
FIGURE 8

Expression profiles of pepper CCCH genes under phytohormone treatments. The phytohormone treatments included methyl jasmonate (MeJA),
salicylic acid (SA), ethylene (ET), and abscisic acid (ABA). Time points include 1, 3, 6, 12, and 24 h. The control group is indicated by a mock label. Red
indicates a high relative abundance of transcripts. Green indicates a low relative abundance of transcripts.
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Gene duplication is one of the primary drivers of the evolution of

genomic and genetic systems. Duplicated genes have the potential to

developnew functions.Gene family expansion in the genomegenerally

stems from tandem and segmental duplication events (Moore and

Purugganan, 2003; Cannon et al., 2004; Levasseur and Pontarotti,

2011). In Group V, there are five pepper CCCH genes (PEPTY3,

PEPTY24, PEPTY40, PEPTY42, and PEPTY45), but only two

Arabidopsis CCCH genes (AtC3H36 and AtC3H52) and two rice

CCCH genes (OsC3H14 and OsC3H31). Two homologs of

Arabidopsis or rice were likely generated by segmental duplication,

and the pepper CCCH genes likely underwent one round of whole-

genome duplication and one tandem duplication.

The expression levels of CCCH genes in pepper varied

significantly among tissues and developmental stages (Chai et al.,

2012; Li et al., 2021). Only the expression of PEPTY24, PEPTY29,

and PEPTY54 was up-regulated in flowers. The expression of

PEPTY24 was specific to flowers, which may be involved in the

regulation offlowering in pepper. PEPTY29 was expressed in flower,

root, and stem, but not in placenta and pericarp; this gene might

thus be involved in regulating flower, root, and stem development.

Twenty-five genes were expressed in the roots, and 27 genes were

expressed in the stems. The expression patterns of CCCH genes in

pepper differ from those of CCCH genes in Arabidopsis and rice,

where most CCCH genes are expressed in the roots, inflorescences,

leaves, and seeds (Wang et al., 2008).

The expression profiles of CCCH genes under biotic stress,

abiotic stress, and phytohormone treatments showed that most

PEPTY genes were highly expressed under these conditions.

Comparison with other studies confirmed that the activity of

most CCCH zinc finger proteins can be induced by hormones

such as ABA and GA; they may play a role in hormone-mediated

signaling pathways (Verma et al., 2016; Han et al., 2021). This

pattern of activity is similar to that observed under biotic and abiotic

stress; it is even likely that a particular gene could respond to multiple
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different treatments. For example, in rice, theOsTZF1gene responds to

GA, MeJA, and salicylate (Jan et al., 2013). In Arabidopsis, the

expression of AtOZF1 was highly induced by ABA and salinity

treatment (Huang et al., 2011). High expression of AtTZF2 and

AtTZF3 enhances tolerance to high salt stress, and the silencing of

these two genes reduces the tolerance of plants to salt and drought

stress (Huang et al., 2011; Huang et al., 2012; Lee et al., 2012). In

addition,AtTZF4, 5, and 6 are positive regulators of ABA (Bogamuwa

and Jang, 2013). These results enhance our understanding of the

growth of pepper plants, as well as the response of pepper to various

types of stress and hormone treatments.

After identifying CCCH genes in pepper that play significant

roles in responses to cold and heat stress, the expression patterns of

five candidate genes that were highly induced by cold stress and

seven candidate genes that were highly induced by heat stress were

validated by qRT-PCR. PEPTY4 and PEPTY51, which were both in

Group XI, were not expressed under cold stress and in the control

environment, but they were highly expressed under heat stress.

However, both PEPTY16 and PEPTY52 belonged to Group XI; the

former was highly expressed under cold stress, and the latter was

highly expressed under heat stress. PEPTY36 in Group IV was

highly expressed under cold treatment at 72 h. PEPTY9, which also

belongs to the same subfamily as PEPTY36, was not significantly

expressed under cold stress, but its expression was gradually up-

regulated under heat stress. Thus, the expression patterns were not

always the same among each subfamily member of each CCCH

gene in pepper. One plausible explanation for this observation is

that pepper is more sensitive to low-temperature and high-

temperature stress. In addition, the responses of different genes to

cold and heat might vary (Wang et al., 2019; Wang et al., 2021; Yang

et al., 2021; Gao et al., 2022; Tang B. et al., 2022; Zhang et al., 2022).

Therefore, further functional studies of these CCCH genes are

needed to clarify the pathways underlying their responses to cold

stress and heat stress.
FIGURE 9

qRT-PCR analysis of 12 pepper CCCH genes under different stress treatments. The x-axis shows the time points after stress treatments. The y-axis
shows the relative expression levels normalized to the reference gene UBI3. Data are mean ± SD of three technical replicates.
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Conclusion

In this study, the phylogenetic relationships, structure,

conserved motifs, chromosomal localization, duplication events,

and expression profiles of CCCH genes were analyzed and 57

CCCH zinc finger genes were identified in pepper. A phylogenetic

tree was constructed using CCCH sequences from Arabidopsis,

tomato, and rice. Based on studies of Arabidopsis, we divided the

pepper CCCH genes into 12 subfamilies. The exon/intron structure

and motif composition were conserved in most subfamily. These

genes were unevenly distributed on 12 chromosomes, and

segmental duplication events appear to have been the major

driver of gene expansion in the CCCH family. We characterized

the expression profiles of CCCH genes in different tissues of pepper

and under various types of stress and validated these expression

patterns using qRT-PCR analysis. We found that CCCH zinc finger

genes play important roles in biological processes such as growth

and development and adaptation to stress. Overall, our findings will

aid future studies aimed at examining the evolution, inheritance,

and function of CCCH zinc finger genes in pepper and other plants.
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