90 research outputs found

    Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0

    Get PDF
    Estimating global river solids, nitrogen (N), and phosphorus (P), in both quantity and composition, is necessary for understanding the development and persistence of many harmful algal blooms, hypoxic events, and other water quality issues in inland and coastal waters. This requires a comprehensive freshwater model that can resolve intertwined algae, solid, and nutrient dynamics, yet previous global watershed models have limited mechanistic resolution of instream biogeochemical processes. Here we develop the global, spatially explicit, and process-based Freshwater Algae, Nutrient, and Solid cycling and Yields (FANSY) model and incorporate it within the Land Model (LM3). The resulting model, LM3-FANSY v1.0, is intended as a baseline for eventual linking of global terrestrial and ocean biogeochemistry in next-generation Earth system models to project global changes that may challenge empirical approaches. LM3-FANSY explicitly resolves interactions between algae, N, P, and solid dynamics in rivers and lakes at 1° spatial and 30 min temporal resolution. Simulated suspended solids (SS), N, and P in multiple forms (particulate or dissolved, organic or inorganic) agree well with measurement-based yield (kg km−2 yr−1), load (kt yr−1), and concentration (mg L−1) estimates across a globally distributed set of large rivers, with an accuracy comparable to other global nutrient and SS models. Furthermore, simulated global river loads of SS, N, and P in different forms to the coastal ocean are consistent with published ranges, though regional biases are apparent. River N loads are estimated to contain approximately equal contributions by dissolved inorganic N (41 %) and dissolved organic N (39 %), with a lesser contribution by particulate organic N (20 %). For river P load estimates, particulate P, which includes both organic and sorbed inorganic forms, is the most abundant form (64 %), followed by dissolved inorganic and organic P (25 % and 11 %). Time series analysis of river solid and nutrient loads in large US rivers for the period ∼ 1963–2000 demonstrates that simulated SS and N loads in different N forms covary with variations of measurement-based loads. LM3-FANSY, however, has less capability to capture interannual variability of P loads, likely due to the lack of terrestrial P dynamics in LM3. Analyses of the model results and sensitivity to components, parameters, and inputs suggest that fluxes from terrestrial litter and soils, wastewater, and weathering are the most critical inputs to the fidelity of simulated river nutrient loads for observation-based estimates. Sensitivity analyses further demonstrate a critical role of algal dynamics in controlling the ratios of inorganic and organic nutrient forms in freshwaters. While the simulations are able to capture significant cross-watershed contrasts at a global scale, disagreement for individual rivers can be substantial. This limitation is shared by other global river models and could be ameliorated through further refinements in nutrient sources, freshwater model dynamics, and observations. Current targets for future LM3-FANSY development include the additions of terrestrial P dynamics, freshwater carbon, alkalinity, enhanced sediment dynamics, and anthropogenic hydraulic controls.</p

    Twenty-first-century compatible co2 emissions and airborne fraction simulated by cmip5 earth system models under four representative concentration pathways

    Get PDF
    PublishedJournal ArticleThe carbon cycle is a crucial Earth system component affecting climate and atmospheric composition. The response of natural carbon uptake to CO2 and climate change will determine anthropogenic emissions compatible with a target CO2 pathway. For phase 5 of the Coupled Model Intercomparison Project (CMIP5), four future representative concentration pathways (RCPs) have been generated by integrated assessment models (IAMs) and used as scenarios by state-of-the-art climate models, enabling quantification of compatible carbon emissions for the four scenarios by complex, process-based models. Here, the authors present results from 15 such Earth system GCMs for future changes in land and ocean carbon storage and the implications for anthropogenic emissions. The results are consistent with the underlying scenarios but show substantial model spread. Uncertainty in land carbon uptake due to differences among models is comparable with the spread across scenarios. Model estimates of historical fossil-fuel emissions agree well with reconstructions, and future projections for representative concentration pathway 2.6 (RCP2.6) and RCP4.5 are consistent with the IAMs. For high-end scenarios (RCP6.0 and RCP8.5), GCMs simulate smaller compatible emissions than the IAMs, indicating a larger climate-carbon cycle feedback in the GCMs in these scenarios. For the RCP2.6 mitigation scenario, an average reduction of 50% in emissions by 2050 from 1990 levels is required but with very large model spread (14%-96%). The models also disagree on both the requirement for sustained negative emissions to achieve the RCP2.6 CO2 concentration and the success of this scenario to restrict global warming below 28C. All models agree that the future airborne fraction depends strongly on the emissions profile with higher airborne fraction for higher emissions scenarios. ©2013 American Meteorological Society.MOHC authors were supported by the JointDECC/Defra MetOffice Hadley Centre Climate Programme (GA01101), and work to performHadGEM2- ES and MPI-ESM CMIP5 simulations was supported by the EU-FP7 COMBINE project (Grant 226520). JS was supported by the EU-FP7 CARBOCHANGE project (Grant 284679). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. JT and CR were supported by the Research Council of Norway through the EarthClim (207711/E10) project

    Representing sub-grid scale variations in nitrogen deposition associated with land use in a global Earth system model: implications for present and future nitrogen deposition fluxes over North America

    Get PDF
    Reactive nitrogen (N) emissions have increased over the last 150 years as a result of greater fossil fuel combustion and food production. The resulting increase in N deposition can alter the function of ecosystems, but characterizing its ecological impacts remains challenging, in part because of uncertainties in model-based estimates of N dry deposition. Here, we use the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric chemistry–climate model (AM3) coupled with the GFDL land model (LM3) to estimate dry deposition velocities. We leverage the tiled structure of LM3 to represent the impact of physical, hydrological, and ecological heterogeneities on the surface removal of chemical tracers. We show that this framework can be used to estimate N deposition at more ecologically relevant scales (e.g., natural vegetation, water bodies) than from the coarse-resolution global model AM3. Focusing on North America, we show that the faster removal of N over forested ecosystems relative to cropland and pasture implies that coarse-resolution estimates of N deposition from global models systematically underestimate N deposition to natural vegetation by 10&thinsp;% to 30&thinsp;% in the central and eastern US. Neglecting the sub-grid scale heterogeneity of dry deposition velocities also results in an underestimate (overestimate) of the amount of reduced (oxidized) nitrogen deposited to water bodies. Overall, changes in land cover associated with human activities are found to slow down the removal of N from the atmosphere, causing a reduction in the dry oxidized, dry reduced, and total (wet+dry) N deposition over the contiguous US of 8&thinsp;%, 26&thinsp;%, and 6&thinsp;%, respectively. We also find that the reduction in the overall rate of removal of N associated with land-use change tends to increase N deposition on the remaining natural vegetation and facilitate N export to Canada. We show that sub-grid scale differences in the surface removal of oxidized and reduced nitrogen imply that projected near-term (2010–2050) changes in oxidized (−47&thinsp;%) and reduced (+40&thinsp;%) US N emissions will cause opposite changes in N deposition to water bodies (increase) and natural vegetation (decrease) in the eastern US, with potential implications for acidification and ecosystems.</p

    Land-Use Change and Earth System Dynamics: Advancing the Science

    Get PDF
    Quantifying the effects of land-use changes on Earth system dynamics requires adequate information on both past and future land-use activities in a format appropriate for models capable of tracking relevant impacts. This presentation will review past approaches to understanding the role of land-use change on the Earth system dynamics, and summarize new work involving ‘land-use harmonization’ (Hurtt et al. 2009) to advance the understanding for IPCC-AR5 and beyond. Emphasis will be placed on the importance and accuracy of historical maps, uncertainties in future projections, and key challenges for the future

    Changes in soil organic carbon storage predicted by Earth system models during the 21st century

    Get PDF
    Soil is currently thought to be a sink for carbon; however, the response of this sink to increasing levels of atmospheric carbon dioxide and climate change is uncertain. In this study, we analyzed soil organic carbon (SOC) changes from 11 Earth system models (ESMs) contributing simulations to the Coupled Model Intercomparison Project Phase 5 (CMIP5). We used a reduced complexity model based on temperature and moisture sensitivities to analyze the drivers of SOC change for the historical and high radiative forcing (RCP 8.5) scenarios between 1850 and 2100. ESM estimates of SOC changed over the 21st century (2090–2099 minus 1997–2006) ranging from a loss of 72 Pg C to a gain of 253 Pg C with a multi-model mean gain of 65 Pg C. Many ESMs simulated large changes in high-latitude SOC that ranged from losses of 37 Pg C to gains of 146 Pg C with a multi-model mean gain of 39 Pg C across tundra and boreal biomes. All ESMs showed cumulative increases in global NPP (11 to 59%) and decreases in SOC turnover times (15 to 28%) over the 21st century. Most of the model-to-model variation in SOC change was explained by initial SOC stocks combined with the relative changes in soil inputs and decomposition rates (R2 = 0.89, p < 0.01). Between models, increases in decomposition rate were well explained by a combination of initial decomposition rate, ESM-specific Q10-factors, and changes in soil temperature (R2 = 0.80, p < 0.01). All SOC changes depended on sustained increases in NPP with global change (primarily driven by increasing CO2). Many ESMs simulated large accumulations of SOC in high-latitude biomes that are not consistent with empirical studies. Most ESMs poorly represented permafrost dynamics and omitted potential constraints on SOC storage, such as priming effects, nutrient availability, mineral surface stabilization, and aggregate formation. Future models that represent these constraints are likely to estimate smaller increases in SOC storage over the 21st century

    SPEAR: The Next Generation GFDL Modeling System for Seasonal to Multidecadal Prediction and Projection

    Get PDF
    We document the development and simulation characteristics of the next generation modeling system for seasonal to decadal prediction and projection at the Geophysical Fluid Dynamics Laboratory (GFDL). SPEAR (Seamless System for Prediction and EArth System Research) is built from component models recently developed at GFDL—the AM4 atmosphere model, MOM6 ocean code, LM4 land model, and SIS2 sea ice model. The SPEAR models are specifically designed with attributes needed for a prediction model for seasonal to decadal time scales, including the ability to run large ensembles of simulations with available computational resources. For computational speed SPEAR uses a coarse ocean resolution of approximately 1.0° (with tropical refinement). SPEAR can use differing atmospheric horizontal resolutions ranging from 1° to 0.25°. The higher atmospheric resolution facilitates improved simulation of regional climate and extremes. SPEAR is built from the same components as the GFDL CM4 and ESM4 models but with design choices geared toward seasonal to multidecadal physical climate prediction and projection. We document simulation characteristics for the time mean climate, aspects of internal variability, and the response to both idealized and realistic radiative forcing change. We describe in greater detail one focus of the model development process that was motivated by the importance of the Southern Ocean to the global climate system. We present sensitivity tests that document the influence of the Antarctic surface heat budget on Southern Ocean ventilation and deep global ocean circulation. These findings were also useful in the development processes for the GFDL CM4 and ESM4 models

    Past and future carbon fluxes from land use change, shifting cultivation and wood harvest

    Get PDF
    Carbon emissions from anthropogenic land use (LU) and land use change (LUC) are quantified with a Dynamic Global Vegetation Model for the past and the 21st century following Representative Concentration Pathways (RCPs). Wood harvesting and parallel abandonment and expansion of agricultural land in areas of shifting cultivation are explicitly simulated (gross LUC) based on the Land Use Harmonization (LUH) dataset and a proposed alternative method that relies on minimum input data and generically accounts for gross LUC. Cumulative global LUC emissions are 72 GtC by 1850 and 243 GtC by 2004 and 27–151 GtC for the next 95 yr following the different RCP scenarios. The alternative method reproduces results based on LUH data with full transition information within <0.1 GtC/yr over the last decades and bears potential for applications in combination with other LU scenarios. In the last decade, shifting cultivation and wood harvest within remaining forests including slash each contributed 19% to the mean annual emissions of 1.2 GtC/yr. These factors, in combination with amplification effects under elevated CO2, contribute substantially to future emissions from LUC in all RCPs
    • …
    corecore