7 research outputs found

    Functional outcomes and complications of simultaneous bilateral total hip arthroplasty in Asian population

    Get PDF
    Background: Total hip arthroplasty (THA) is one of the most successful and cost-benefit surgical treatments. However, there are concerns about the safety of the procedure and higher complications. We aimed to evaluate the complications and outcomes of one-stage bilateral total hip arthroplasty (BTHA) with anterolateral approach.Methods: A total of 24 patients from February 2014 to October 2019 underwent BTHA in Government Medical College and Attached Group of Hospitals, Kota. A prospective analysis of the functional outcomes and complications was performed. All surgeries were performed via anterolateral approach. All patients were followed up till 1.5 years post-operative.Results: During period of study 16 men and 8 women with a mean age of 40.12±2.52 years at the time of presentation were entered. The mean surgical time was 112±6 mins. The mean hospital stay was 7 days. Hemoglobin level decreased significantly after operation (p=0.046) mean of 10.83±0.3 mg/dl. There was no reported patient with perioperative death, deep venous thrombosis, pulmonary embolism, infection, dislocation, periprosthetic fracture or heterotrophic ossification. The mean preoperative MHHS score was 45.93±5.33 in patients. MHHS score improved to 92.06±2.47 in the last follow-up (p=0.0001).Conclusions: Our results recommend the use of one-stage BTHA through anterolateral approach in cases indicating bilateral THA without increase in rate of complications. Functional and clinical outcomes are comparable and hospital stay is significantly shorter

    Evaluation of Diagnostic Accuracy of Magnetic Resonance Imaging in Posterior Ligamentum Complex Injury of Thoracolumbar Spine

    Get PDF
    Study Design Prospective diagnostic imaging study. Purpose The stability of the thoracic and lumbar spine depends significantly on the posterior ligamentum complex (PLC). Therefore, it is essential to diagnose PLC injuries accurately before deciding on a treatment plan for thoracolumbar injury patients. However, the efficacy of magnetic resonance imaging (MRI) in diagnosing PLC remains undetermined. Overview of Literature MRI has become the ultimate tool in diagnosing spine injury cases, as previous literature suggests that it has very high sensitivity and specificity. But this is still controversial and as many surgeons rely on just MRI for selecting the patient for surgery, it becomes important to know the diagnostic accuracy of it. Methods Patients who sustained injuries from T1 to L3 and required posterior surgery were prospectively studied. The treating surgeon and musculoskeletal radiologist participating in the study reviewed preoperative MRI images to characterize the level(s) of injury and the integrity of the six components of the PLC. These were classified as intact, incompletely disrupted, or disrupted. During the surgical procedure, the surgeon also classified each component of the PLC, and the radiologist’s and surgeon’s findings were compared. Results Out of 66 patients, 46 were males (69.7%) and 20 were females (30.3%), and the average age was 34.12 years. According to the kappa score, there was a moderate level of agreement between the radiologist’s interpretation and the intraoperative findings for all PLC components except for the thoracolumbar fascia and ligamentum flavum for which there was a slight agreement. The sensitivity for the intact PLC components ranged from 100% (supraspinous ligament) to 66.67% (ligamentum flavum). The specificity ranged from 100% (interspinous ligament) to 52% (thoracolumbar fascia). The Spearman’s rank correlation ranged from 0.061 for the thoracolumbar fascia to 0.918 for the interspinous ligament, and the percentage agreement ranged from 81.82% (interspinous ligament to 36.36% (thoracolumbar fascia). Conclusions The sensitivity and specificity of MRI for diagnosing injury of the PLC in this study were lower than those previously reported in the literature. The integrity of the PLC as determined by MRI should not be used in isolation to determine treatment

    Peroneus Longus Tendon Autograft for Anterior Cruciate Ligament Reconstruction: A Safe and Effective Alternative in Nonathletic Patients

    Get PDF
    Introduction: Anterior cruciate ligament (ACL) is a common injury which has been conventionally managed by various graft reconstruction using bone patellar tendon bone, or quadruple hamstring autograft, to name a few. However, all these grafts are associated with many complications. Lately, peroneus longus tendon (PLT) autograft has shown promising results in this field, although there is still a dearth of data on its use. We, therefore, aimed at carrying out a study to evaluate the functional outcome and knee stability results of ACL reconstruction using PLT graft. Patients and Methods: Patients with a completely torn ACL were included in the study. The PLT was harvested, and graft length, thickness, and harvesting time were noted intraoperatively. Knee stability and functional scores were evaluated clinically and using Lachman test (primarily) and KT-2000 arthrometer and subjectively with International Knee Documentation Committee (IKDC) score at 6, 12, and 24 months (secondary outcome) postoperatively. Ankle scores were also recorded by making use of American Orthopedic Foot and Ankle Score (AOFAS)–Hindfoot Scale. Results: Forty-eight patients met the inclusion criteria. The graft harvest time was 7.4 min (5–9 min). The mean thickness of the graft on doubling was 7.9 mm (7–9 mm). Ninety-six percent of the patients were satisfied with their results of the knee surgery, and 95% of the patients had no complaints of ankle joint. The mean IKDC score postoperatively was 78.16 ± 6.23, and the mean AOFAS score was 98.4 ± 4.1. None of the patients had any neurovascular deficit. Conclusion: ACL reconstruction using PLT graft yields a good functional score (IKDC, KT-2000 arthrometer) even at 2-year follow-up. It is a safe and effective autograft option for ACL reconstruction

    Tribological and Morphological Study of AISI 316L Stainless Steel during Turning under Different Lubrication Conditions

    No full text
    Due to growing environmental concerns and economical and social problems in manufacturing sectors, there is a huge demand for the substitution of existing cutting fluids. Further, the cutting fluids selected are expected to reduce the cutting force, improve the surface roughness and also minimize the tool wear during machining operations. Hence, this paper discusses the tribological and morphological behaviour of AISI 316L stainless steel while turning under minimum quantity lubrication (MQL) such as oil–water emulsion, mineral oil, simarouba oil, pongam oil and neem oil based on Taguchi L25 orthogonal array. From the extensive experimentation, it was observed that neem oil MQL with cutting speed of (140, 140, 60 m/min), feed of (0.30, 0.20, 0.10 mm/rev) and depth of cut of (1.0, 1.0, 1.0 mm) resulted in the lowest surface roughness (0.36 µm),cutting force (235.34 N) and tool wear (100.32 microns), respectively. Further, main effects plots and analysis of variance (ANOVA)can be successfully used to identify the optimum process input parameters and their percentage of contribution (P%) on the output parameters during turning of AISI 316L steel under MQL applications. The results clearly indicate that from both an ecological and economical standpoint, neem oil is the most effective lubricant in reducing cutting forces, tool wear and surface roughness during turning of AISI 316L stainless steel under MQL

    Endoplasmic reticulum chaperone genes encode effectors of long-term memory

    No full text
    The mechanisms underlying memory loss associated with Alzheimer’s disease and related dementias (ADRD) remain unclear, and no effective treatments exist. Fundamental studies have shown that a set of transcriptional regulatory proteins of the nuclear receptor 4a (Nr4a) family serve as molecular switches for long-term memory. Here, we show that Nr4a proteins regulate the transcription of genes encoding chaperones that localize to the endoplasmic reticulum (ER). These chaperones fold and traffic plasticity-related proteins to the cell surface during long-lasting forms of synaptic plasticity and memory. Dysregulation of Nr4a transcription factors and ER chaperones is linked to ADRD, and overexpressing Nr4a1 or the chaperone Hspa5 ameliorates long-term memory deficits in a tau-based mouse model of ADRD, pointing toward innovative therapeutic approaches for treating memory loss. Our findings establish a unique molecular concept underlying long-term memory and provide insights into the mechanistic basis of cognitive deficits in dementia
    corecore