274 research outputs found

    Manipulating mesoscopic multipartite entanglement with atom-light interfaces

    Get PDF
    Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation and detection of genuine multipartite entanglement between mesoscopic atomic ensembles. Our results extend in a non trivial way the EPR entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature {\bf 413}, 400 (2001)]. We find that under realistic conditions, a second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.Comment: 8 pages, 6 figure

    Distant Entanglement of Macroscopic Gas Samples

    Full text link
    One of the main ingredients in most quantum information protocols is a reliable source of two entangled systems. Such systems have been generated experimentally several years ago for light but has only in the past few years been demonstrated for atomic systems. None of these approaches however involve two atomic systems situated in separate environments. This is necessary for the creation of entanglement over arbitrary distances which is required for many quantum information protocols such as atomic teleportation. We present an experimental realization of such distant entanglement based on an adaptation of the entanglement of macroscopic gas samples containing about 10^11 cesium atoms shown previously by our group. The entanglement is generated via the off-resonant Kerr interaction between the atomic samples and a pulse of light. The achieved entanglement distance is 0.35m but can be scaled arbitrarily. The feasibility of an implementation of various quantum information protocols using macroscopic samples of atoms has therefore been greatly increased. We also present a theoretical modeling in terms of canonical position and momentum operators X and P describing the entanglement generation and verification in presence of decoherence mechanisms.Comment: 20 pages book-style, 3 figure

    Single-passage read-out of atomic quantum memory

    Full text link
    A scheme for retrieving quantum information stored in collective atomic spin systems onto optical pulses is presented. Two off-resonant light pulses cross the atomic medium in two orthogonal directions and are interferometrically recombined in such a way that one of the outputs carries most of the information stored in the medium. In contrast to previous schemes our approach requires neither multiple passes through the medium nor feedback on the light after passing the sample which makes the scheme very efficient. The price for that is some added noise which is however small enough for the method to beat the classical limits.Comment: 8 pages, 2 figures, RevTeX

    Non-Gaussian distribution of collective operators in quantum spin chains

    Get PDF
    We numerically analyse the behavior of the full distribution of collective observables in quantum spin chains. While most of previous studies of quantum critical phenomena are limited to the first moments, here we demonstrate how quantum fluctuations at criticality lead to highly non-Gaussian distributions thus violating the central limit theorem. Interestingly, we show that the distributions for different system sizes collapse after scaling on the same curve for a wide range of transitions: first and second order quantum transitions and transitions of the Berezinskii-Kosterlitz-Thouless type. We propose and carefully analyse the feasibility of an experimental reconstruction of the distribution using light-matter interfaces for atoms in optical lattices or in optical resonators.Comment: 15 pages, 5 figures; last version close to published versio

    Characterization of Bose-Hubbard Models with Quantum Non-demolition Measurements

    Get PDF
    We propose a scheme for the detection of quantum phase transitions in the 1D Bose-Hubbard (BH) and 1D Extended Bose-Hubbard (EBH) models, using the non-demolition measurement technique of quantum polarization spectroscopy. We use collective measurements of the effective total angular momentum of a particular spatial mode to characterise the Mott insulator to superfluid phase transition in the BH model, and the transition to a density wave state in the EBH model. We extend the application of collective measurements to the ground states at various deformations of a super-lattice potential.Comment: 8 pages, 9 figures; published version in PRA, Editors' Suggestio

    Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement

    Full text link
    Entangled many body systems have recently attracted significant attention in various contexts. Among them, spin squeezed atoms and ions have raised interest in the field of precision measurements, as they allow to overcome quantum noise of uncorrelated particles. Precise quantum state engineering is also required as a resource for quantum computation, and spin squeezing can be used to create multi-partite entangled states. Two-mode spin squeezed systems have been used for elementary quantum communication protocols. Until now spin squeezing has been always achieved via generation of entanglement between different atoms of the ensemble. In this Letter, we demonstrate for the first time ensemble spin squeezing generated by engineering the quantum state of each individual atom. More specifically, we entangle the nuclear and electronic spins of 101210^{12} Cesium atoms at room temperature. We verify entanglement and ensemble spin squeezing by performing quantum tomography on the atomic state.Comment: 5 pages, 3 figure

    Preparation of ultracold atom clouds at the shot noise level

    Get PDF
    We prepare number stabilized ultracold clouds through the real-time analysis of non-destructive images and the application of feedback. In our experiments, the atom number N∼106{N\sim10^6} is determined by high precision Faraday imaging with uncertainty ΔN\Delta_N below the shot noise level, i.e., ΔN<N\Delta_N <\sqrt{N}. Based on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level.Comment: Main text: 4 Figures, 4 pages. Supplemental Information: 4 figures, 5 page
    • …
    corecore