93 research outputs found

    Measuring angular diameter distances of strong gravitational lenses

    Full text link
    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/rGM/r) and a mass (GMGM) of the lens, respectively, dividing them gives a physical size (rr) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304z_{\rm L}=0.6304) and RXJ1131-1231 (zL=0.295z_{\rm L}=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2\sigma^2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DAD_A per object. This improves to 13% when we measure σ2\sigma^2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2\sigma^2 with 5% precision.Comment: Accepted to JCA

    The anatomy of a quadruply imaged gravitational lens system

    Get PDF
    The key to using a strong gravitational lens system to measure the Hubble constant is to obtain an accurate model of the lens potential. In this paper, we investigate the properties of gravitational lens B1608+656, a quadruply-imaged lens system with an extended source intensity distribution. Our analysis is valid for generic quadruply-lensed systems. Limit curves and isophotal separatrices are defined for such systems, and we show that the isophotal separatrices must intersect at the critical curves and the satellite isophotes must be tangent to the limit curves. The current model of B1608+656 (Koopmans et al. 2003) satisfies these criteria for some, but not all, of the isophotal separatrices within the observational uncertainty. We study a non-parametric method of potential reconstruction proposed by Blandford, Surpi & Kundic (2001) and demonstrate that although the method works in principle and elucidates image formation, the initial potential only converges to the true model when it is within ~ 1 percent of the true model.Comment: 12 pages, 12 figures. Minor revisions based on referee's comments after initial submission to MNRA

    Time-delay Cosmography: Increased Leverage with Angular Diameter Distances

    Full text link
    Strong lensing time-delay systems constrain cosmological parameters via the so-called time-delay distance and the angular diameter distance to the lens. In previous studies, only the former information was used. In this paper, we show that the cosmological constraints improve significantly when the latter information is also included. Specifically, the angular diameter distance plays a crucial role in breaking the degeneracy between the curvature of the Universe and the time-varying equation of state of dark energy. Using a mock sample of 55 bright quadruple lens systems based on expectations for ongoing/future imaging surveys, we find that adding the angular diameter distance information to the time-delay distance information and the cosmic microwave background data of Planck improves the constraint on the constant equation of state by 30%, on the time variation in the equation of state by a factor of two, and on the Hubble constant in the flat Λ\LambdaCDM model by a factor of two. Therefore, previous forecasts for the statistical power of time-delay systems were significantly underestimated, i.e., time-delay systems are more powerful than previously appreciated.Comment: [v2] 18 pages, 12 figures, submitted to JCAP. An error in the fisher matrix for SNIa fixed; conclusions unchange

    The SL2S Galaxy-scale Lens Sample. III. Lens Models, Surface Photometry and Stellar Masses for the final sample

    Full text link
    We present Hubble Space Telescope (HST) imaging data and CFHT Near IR ground-based images for the final sample of 56 candidate galaxy-scale lenses uncovered in the CFHT Legacy Survey as part of the Strong Lensing in the Legacy Survey (SL2S) project. The new images are used to perform lens modeling, measure surface photometry, and estimate stellar masses of the deflector early-type galaxies. Lens modeling is performed on the HST images (or CFHT when HST is not available) by fitting the spatially extended light distribution of the lensed features assuming a singular isothermal ellipsoid mass profile and by reconstructing the intrinsic source light distribution on a pixelized grid. Based on the analysis of systematic uncertainties and comparison with inference based on different methods we estimate that our Einstein Radii are accurate to \sim3%. HST imaging provides a much higher success rate in confirming gravitational lenses and measuring their Einstein radii than CFHT imaging does. Lens modeling with ground-based images however, when successful, yields Einstein radius measurements that are competitive with spaced-based images. Information from the lens models is used together with spectroscopic information from the companion paper IV to classify the systems, resulting in a final sample of 39 confirmed (grade-A) lenses and 17 promising candidates. The redshifts of the main deflector span a range 0.3<zd< 0.8, providing an excellent sample for the study of the cosmic evolution of the mass distribution of early-type galaxies over the second half of the history of the Universe.Comment: Submitted to The Astrophysical Journa

    Interpreting the strongly lensed supernova iPTF16geu: time delay predictions, microlensing, and lensing rates

    Full text link
    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well-known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the {\it Hubble Space Telescope} F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hours reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.Comment: 5 pages, 3 figures, 1 table, ApjL accepted, minor but important correction

    ALMA Observations of the Gravitational Lens SDP.9

    Full text link
    We present long-baseline ALMA observations of the strong gravitational lens H-ATLAS J090740.0-004200 (SDP.9), which consists of an elliptical galaxy at zL=0.6129z_{\mathrm{L}}=0.6129 lensing a background submillimeter galaxy into two extended arcs. The data include Band 6 continuum observations, as well as CO JJ=6-5 molecular line observations, from which we measure an updated source redshift of zS=1.5747z_{\mathrm{S}}=1.5747. The image morphology in the ALMA data is different from that of the HST data, indicating a spatial offset between the stellar, gas, and dust component of the source galaxy. We model the lens as an elliptical power law density profile with external shear using a combination of archival HST data and conjugate points identified in the ALMA data. Our best model has an Einstein radius of θE=0.66±0.01\theta_{\mathrm{E}}=0.66\pm0.01 and a slightly steeper than isothermal mass profile slope. We search for the central image of the lens, which can be used constrain the inner mass distribution of the lens galaxy including the central supermassive black hole, but do not detect it in the integrated CO image at a 3σ\sigma rms level of 0.0471 Jy km s1^{-1}.Comment: Accepted for publication in ApJL; 6 pages, 2 figures, 3 table

    The SL2S Galaxy-scale Lens Sample. V. Dark Matter Halos and Stellar IMF of Massive Early-type Galaxies out to Redshift 0.8

    Full text link
    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the Universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the SL2S and SLACS surveys and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar IMF across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of an NFW profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at logM=11.5\log{M_*} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.Comment: Accepted for publication on The Astrophysical Journal. Revised version. (25 pages, 18 figures

    The SL2S Galaxy-scale Lens Sample. IV. The dependence of the total mass density profile of early-type galaxies on redshift, stellar mass, and size

    Full text link
    We present optical and near infrared spectroscopy obtained at Keck, VLT, and Gemini for a sample of 36 secure strong gravitational lens systems and 17 candidates identified as part of the SL2S survey. The deflectors are massive early-type galaxies in the redshift range z_d=0.2-0.8, while the lensed sources are at z_s=1-3.5. We combine this data with photometric and lensing measurements presented in the companion paper III and with lenses from the SLACS and LSD surveys to investigate the cosmic evolution of the internal structure of massive early-type galaxies over half the age of the universe. We study the dependence of the slope of the total mass density profile \gamma' (\rho(r)\propto r^{-\gamma'}) on stellar mass, size, and redshift. We find that two parameters are sufficent to determine \gamma' with less than 6% residual scatter. At fixed redshift, \gamma' depends solely on the surface stellar mass density \partial \gamma'/ \partial \Sigma_*=0.38\pm 0.07, i.e. galaxies with denser stars also have steeper slopes. At fixed M_* and R_{eff}, \gamma' depends on redshift, in the sense that galaxies at a lower redshift have steeper slopes (\partial \gamma' / \partial z = -0.31\pm 0.10). However, the mean redshift evolution of \gamma' for an individual galaxy is consistent with zero d\gamma'/dz=-0.10\pm0.12. This result is obtained by combining our measured dependencies of \gamma' on z,M_*,R_{eff} with the evolution of the R_{eff}-M_* taken from the literature, and is broadly consistent with current models of the formation and evolution of massive early-type galaxies. Detailed quantitative comparisons of our results with theory will provide qualitatively new information on the detailed physical processes at work.Comment: Submitted to The Astrophysical Journa
    corecore