97 research outputs found

    The Mythology of Game Theory

    Get PDF
    Non-cooperative game theory is at its heart a theory of cognition, specifically a theory of how decisions are made. Game theory\u27s leverage is that we can design different payoffs, settings, player arrays, action possibilities, and information structures, and that these differences lead to different strategies, outcomes, and equilibria. It is well-known that, in experimental settings, people do not adopt the predicted strategies, outcomes, and equilibria. The standard response to this mismatch of prediction and observation is to add various psychological axioms to the game-theoretic framework. Regardless of the differing specific proposals and results, game theory uniformly makes certain cognitive assumptions that seem rarely to be acknowledged, much less interrogated. Indeed, it is not widely understood that game theory is essentially a cognitive theory. Here, we interrogate those cognitive assumptions. We do more than reject specific predictions from specific games. More broadly, we reject the underlying cognitive model implicitly assumed by game theory

    Adaptive cluster expansion for the inverse Ising problem: convergence, algorithm and tests

    Get PDF
    We present a procedure to solve the inverse Ising problem, that is to find the interactions between a set of binary variables from the measure of their equilibrium correlations. The method consists in constructing and selecting specific clusters of variables, based on their contributions to the cross-entropy of the Ising model. Small contributions are discarded to avoid overfitting and to make the computation tractable. The properties of the cluster expansion and its performances on synthetic data are studied. To make the implementation easier we give the pseudo-code of the algorithm.Comment: Paper submitted to Journal of Statistical Physic

    Layered control architectures in robots and vertebrates

    Get PDF
    We revieiv recent research in robotics, neuroscience, evolutionary neurobiology, and ethology with the aim of highlighting some points of agreement and convergence. Specifically, we com pare Brooks' (1986) subsumption architecture for robot control with research in neuroscience demonstrating layered control systems in vertebrate brains, and with research in ethology that emphasizes the decomposition of control into multiple, intertwined behavior systems. From this perspective we then describe interesting parallels between the subsumption architecture and the natural layered behavior system that determines defense reactions in the rat. We then consider the action selection problem for robots and vertebrates and argue that, in addition to subsumption- like conflict resolution mechanisms, the vertebrate nervous system employs specialized selection mechanisms located in a group of central brain structures termed the basal ganglia. We suggest that similar specialized switching mechanisms might be employed in layered robot control archi tectures to provide effective and flexible action selection

    Brain Flow in Application for SYNAP New Robotic Platform

    No full text
    • …
    corecore