5 research outputs found

    Polythermal structure of a Himalayan debris-covered glacier revealed by borehole thermometry

    Get PDF
    Runoff from high-elevation debris-covered glaciers represents a crucial water supply for millions of people in the Hindu Kush-Himalaya region, where peak water has already passed in places. Knowledge of glacier thermal regime is essential for predicting dynamic and geometric responses to mass balance change and determining subsurface drainage pathways, which ultimately influence proglacial discharge and hence downstream water availability. Yet, deep internal ice temperatures of these glaciers are unknown, making projections of their future response to climate change highly uncertain. Here, we show that the lower part of the ablation area of Khumbu Glacier, a high-elevation debris-covered glacier in Nepal, may contain ~56% temperate ice, with much of the colder shallow ice near to the melting-point temperature (within 0.8 °C). From boreholes drilled in the glacier’s ablation area, we measured a minimum ice temperature of −3.3 °C, and even the coldest ice we measured was 2 °C warmer than the mean annual air temperature. Our results indicate that high-elevation Himalayan glaciers are vulnerable to even minor atmospheric warming

    A case study using 2019 pre-monsoon snow and stream chemistry in the Khumbu region, Nepal

    Get PDF
    This case study provides a framework for future monitoring and evidence for human source pollution in the Khumbu region, Nepal. We analyzed the chemical composition (major ions, major/trace elements, black carbon, and stable water isotopes) of pre-monsoon stream water (4300–5250 m) and snow (5200–6665 m) samples collected from Mt. Everest, Mt. Lobuche, and the Imja Valley during the 2019 pre-monsoon season, in addition to a shallow ice core recovered from the Khumbu Glacier (5300 m). In agreement with previous work, pre-monsoon aerosol deposition is dominated by dust originating from western sources and less frequently by transport from southerly air mass sources as demonstrated by evidence of one of the strongest recorded pre-monsoon events emanating from the Bay of Bengal, Cyclone Fani. Elevated concentrations of human-sourced metals (e.g., Pb, Bi, As) are found in surface snow and stream chemistry collected in the Khumbu region. As the most comprehensive case study of environmental chemistry in the Khumbu region, this research offers sufficient evidence for increased monitoring in this watershed and surrounding areas

    The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier

    No full text
    In cold and arid climates, small glaciers with cold accumulation zones are often thought to be entirely cold based. However, scattering in ground-penetrating radar (GPR) measurements on the Rikha Samba Glacier in the Nepal Himalayas suggests a large amount of temperate ice that seems to be influenced by the presence of crevassed areas. We used a coupled thermo-mechanical model forced by a firn model accounting for firn heating to interpret the observed thermal regime. Using a simple energy conservation approach, we show that the addition of water percolation and refreezing in crevassed areas explains these observations. Model experiments show that both steady and transient thermal regimes are significantly affected by latent heat release in crevassed areas. This makes half of the glacier base temperate, resulting in an ice dynamic mainly controlled by basal friction instead of ice deformation. The timescale of thermal regime change, in response to atmospheric warming, is also greatly diminished, with a potential switch from cold to temperate basal ice in 50–60 years in the upper part of the glacier instead of the 100–150 years that it would take without the effect of the crevasses. This study highlights the crucial role of water percolation through the crevasses on the thermal regime of glaciers and validates a simple method to account for it in glacier thermo-mechanical models

    Weather on Mount Everest during the 2019 summer monsoon

    No full text
    Records from new high altitude weather stations reveal the meteorological conditions on Mt Everest during the 2019 monsoon. Using data from June-October, we show that the temperature, humidity, and winds announce the arrival of the monsoon, with changes that amplify with elevation. The largest change is therefore at the summit, where we estimate that monthly mean air temperature increased by 5.5 °C between June and July to average -19.1 °C over the monsoon. Such warming takes temperatures into the realm of winter conditions on much lower mountains of the mid-latitudes, illustrated with the well-known Mount Washington observatory (1,916 m; New Hampshire, USA). Although other dangers of climbing Everest may be enhanced during the monsoon, the cold induced hazard is much reduced

    Genome sequence, comparative analysis and haplotype structure of the domestic dog.

    No full text
    Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health
    corecore