64 research outputs found

    Identification of PKD1L1 Gene Variants in Children with the Biliary Atresia Splenic Malformation Syndrome

    Get PDF
    Biliary atresia (BA) is the most common cause of end‐stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown. Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malformations — a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome. We hypothesized that genetic factors linking laterality features with the etiopathogenesis of BA in BASM patients could be identified through whole exome sequencing (WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient‐parent trios, from the NIDDK‐supported Childhood Liver Disease Research Network (ChiLDReN) underwent WES. Candidate gene variants derived from a pre‐specified set of 2,016 genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized according to pathogenicity, population frequency, and mode of inheritance. Five BASM subjects harbored rare and potentially deleterious bi‐allelic variants in polycystin 1‐like 1, PKD1L1, a gene associated with ciliary calcium signaling and embryonic laterality determination in fish, mice and humans. Heterozygous PKD1L1 variants were found in 3 additional subjects. Immunohistochemical analysis of liver from the one BASM subject available revealed decreased PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected by other non‐cholestatic diseases. Conclusion WES identified bi‐allelic and heterozygous PKD1L1 variants of interest in 8 BASM subjects from the ChiLDReN dataset. The dual roles for PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a new, biologically plausible, cholangiocyte‐expressed candidate gene for the BASM syndrome

    Neurodevelopmental Outcome of Young Children with Biliary Atresia and Native Liver: Results from the ChiLDReN Study

    Get PDF
    OBJECTIVES: To assess neurodevelopmental outcomes among participants with biliary atresia with their native liver at ages 12 months (group 1) and 24 months (group 2), and to evaluate variables predictive of neurodevelopmental impairment. STUDY DESIGN: Participants enrolled in a prospective, longitudinal, multicenter study underwent neurodevelopmental testing with either the Bayley Scales of Infant Development, 2nd edition, or Bayley Scales of Infant and Toddler Development, 3rd edition. Scores (normative mean = 100 ± 15) were categorized as ≄100, 85-99, and <85 for χ2 analysis. Risk for neurodevelopmental impairment (defined as ≄1 score of <85 on the Bayley Scales of Infant Development, 2nd edition, or Bayley Scales of Infant and Toddler Development, 3rd edition, scales) was analyzed using logistic regression. RESULTS: There were 148 children who completed 217 Bayley Scales of Infant and Toddler Development, 3rd edition, examinations (group 1, n = 132; group 2, n = 85). Neurodevelopmental score distributions significantly shifted downward compared with test norms at 1 and 2 years of age. Multivariate analysis identified ascites (OR, 3.17; P = .01) and low length z-scores at time of testing (OR, 0.70; P < .04) as risk factors for physical/motor impairment; low weight z-score (OR, 0.57; P = .001) and ascites (OR, 2.89; P = .01) for mental/cognitive/language impairment at 1 year of age. An unsuccessful hepatoportoenterostomy was predictive of both physical/motor (OR, 4.88; P < .02) and mental/cognitive/language impairment (OR, 4.76; P = .02) at 2 years of age. CONCLUSION: Participants with biliary atresia surviving with native livers after hepatoportoenterostomy are at increased risk for neurodevelopmental delays at 12 and 24 months of age. Those with unsuccessful hepatoportoenterostomy are >4 times more likely to have neurodevelopmental impairment compared with those with successful hepatoportoenterostomy. Growth delays and/or complications indicating advanced liver disease should alert clinicians to the risk for neurodevelopmental delays, and expedite appropriate interventions

    Total Serum Bilirubin within 3 Months of Hepatoportoenterostomy Predicts Short-Term Outcomes in Biliary Atresia

    Get PDF
    OBJECTIVES: To prospectively assess the value of serum total bilirubin (TB) within 3 months of hepatoportoenterostomy (HPE) in infants with biliary atresia as a biomarker predictive of clinical sequelae of liver disease in the first 2 years of life. STUDY DESIGN: Infants with biliary atresia undergoing HPE between June 2004 and January 2011 were enrolled in a prospective, multicenter study. Complications were monitored until 2 years of age or the earliest of liver transplantation (LT), death, or study withdrawal. TB below 2 mg/dL (34.2 ÎŒM) at any time in the first 3 months (TB <2.0, all others TB ≄ 2) after HPE was examined as a biomarker, using Kaplan-Meier survival and logistic regression. RESULTS: Fifty percent (68/137) of infants had TB < 2.0 in the first 3 months after HPE. Transplant-free survival at 2 years was significantly higher in the TB < 2.0 group vs TB ≄ 2 (86% vs 20%, P < .0001). Infants with TB ≄ 2 had diminished weight gain (P < .0001), greater probability of developing ascites (OR 6.4, 95% CI 2.9-14.1, P < .0001), hypoalbuminemia (OR 7.6, 95% CI 3.2-17.7, P < .0001), coagulopathy (OR 10.8, 95% CI 3.1-38.2, P = .0002), LT (OR 12.4, 95% CI 5.3-28.7, P < .0001), or LT or death (OR 16.8, 95% CI 7.2-39.2, P < .0001). CONCLUSIONS: Infants whose TB does not fall below 2.0 mg/dL within 3 months of HPE were at high risk for early disease progression, suggesting they should be considered for LT in a timely fashion. Interventions increasing the likelihood of achieving TB <2.0 mg/dL within 3 months of HPE may enhance early outcomes

    Clinically Actionable Hypercholesterolemia and Hypertriglyceridemia in Children with Nonalcoholic Fatty Liver Disease

    Get PDF
    OBJECTIVE: To determine the percentage of children with nonalcoholic fatty liver disease (NAFLD) in whom intervention for low-density lipoprotein cholesterol or triglycerides was indicated based on National Heart, Lung, and Blood Institute guidelines. STUDY DESIGN: This multicenter, longitudinal cohort study included children with NAFLD enrolled in the National Institute of Diabetes and Digestive and Kidney Diseases Nonalcoholic Steatohepatitis Clinical Research Network. Fasting lipid profiles were obtained at diagnosis. Standardized dietary recommendations were provided. After 1 year, lipid profiles were repeated and interpreted according to National Heart, Lung, and Blood Institute Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction. Main outcomes were meeting criteria for clinically actionable dyslipidemia at baseline, and either achieving lipid goal at follow-up or meeting criteria for ongoing intervention. RESULTS: There were 585 participants, with a mean age of 12.8 years. The prevalence of children warranting intervention for low-density lipoprotein cholesterol at baseline was 14%. After 1 year of recommended dietary changes, 51% achieved goal low-density lipoprotein cholesterol, 27% qualified for enhanced dietary and lifestyle modifications, and 22% met criteria for pharmacologic intervention. Elevated triglycerides were more prevalent, with 51% meeting criteria for intervention. At 1 year, 25% achieved goal triglycerides with diet and lifestyle changes, 38% met criteria for advanced dietary modifications, and 37% qualified for antihyperlipidemic medications. CONCLUSIONS: More than one-half of children with NAFLD met intervention thresholds for dyslipidemia. Based on the burden of clinically relevant dyslipidemia, lipid screening in children with NAFLD is warranted. Clinicians caring for children with NAFLD should be familiar with lipid management

    The Natural History of Severe Acute Liver Injury.

    Get PDF
    OBJECTIVES: Acute liver failure (ALF) is classically defined by coagulopathy and hepatic encephalopathy (HE); however, acute liver injury (ALI), i.e., severe acute hepatocyte necrosis without HE, has not been carefully defined nor studied. Our aim is to describe the clinical course of specifically defined ALI, including the risk and clinical predictors of poor outcomes, namely progression to ALF, the need for liver transplantation (LT) and death. METHODS: 386 subjects prospectively enrolled in the Acute Liver Failure Study Group registry between 1 September 2008 through 25 October 2013, met criteria for ALI: International Normalized Ratio (INR)≄2.0 and alanine aminotransferase (ALT)≄10 × elevated (irrespective of bilirubin level) for acetaminophen (N-acetyl-p-aminophenol, APAP) ALI, or INR≄2.0, ALT≄10x elevated, and bilirubin≄3.0 mg/dl for non-APAP ALI, both groups without any discernible HE. Subjects who progressed to poor outcomes (ALF, death, LT) were compared, by univariate analysis, with those who recovered. A model to predict poor outcome was developed using the random forest (RF) procedure. RESULTS: Progression to a poor outcome occurred in 90/386 (23%), primarily in non-APAP (71/179, 40%) vs. only 14/194 (7.2%) in APAP patients comprising 52% of all cases (13 cases did not have an etiology assigned; 5 of whom had a poor outcome). Of 82 variables entered into the RF procedure: etiology, bilirubin, INR, APAP level and duration of jaundice were the most predictive of progression to ALF, LT, or death. CONCLUSIONS: A majority of ALI cases are due to APAP, 93% of whom will improve rapidly and fully recover, while non-APAP patients have a far greater risk of poor outcome and should be targeted for early referral to a liver transplant center

    Human cell types important for Hepatitis C Virus replication in vivo and in vitro. Old assertions and current evidence

    Get PDF
    Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro

    Heterogeneous Liver on Research Ultrasound Identifies Children with Cystic Fibrosis at High Risk of Advanced Liver Disease: Interim Results of a Prospective Observational Case-Controlled Study

    Get PDF
    Objective: To assess if a heterogeneous pattern on research liver ultrasound examination can identify children at risk for advanced cystic fibrosis (CF) liver disease. Study design: Planned 4-year interim analysis of a 9-year multicenter, case-controlled cohort study (Prospective Study of Ultrasound to Predict Hepatic Cirrhosis in CF). Children with pancreatic insufficient CF aged 3-12 years without known cirrhosis, Burkholderia species infection, or short bowel syndrome underwent a screening research ultrasound examination. Participants with a heterogeneous liver ultrasound pattern were matched (by age, Pseudomonas infection status, and center) 1:2 with participants with a normal pattern. Clinical status and laboratory data were obtained annually and research ultrasound examinations biannually. The primary end point was the development of a nodular research ultrasound pattern, a surrogate for advanced CF liver disease. Results: There were 722 participants who underwent screening research ultrasound examination, of which 65 were heterogeneous liver ultrasound pattern and 592 normal liver ultrasound pattern. The final cohort included 55 participants with a heterogeneous liver ultrasound pattern and 116 participants with a normal liver ultrasound pattern. All participants with at least 1 follow-up research ultrasound were included. There were no differences in age or sex between groups at entry. Alanine aminotransferase (42 ± 22 U/L vs 32 ± 19 U/L; P = .0033), gamma glutamyl transpeptidase (36 ± 34 U/L vs 15 ± 8 U/L; P < .001), and aspartate aminotransferase to platelet ratio index (0.7 ± 0.5 vs 0.4 ± 0.2; P < .0001) were higher in participants with a heterogeneous liver ultrasound pattern compared with participants with a normal liver ultrasound pattern. Participants with a heterogeneous liver ultrasound pattern had a 9.1-fold increased incidence (95% CI, 2.7-30.8; P = .0004) of nodular pattern vs a normal liver ultrasound pattern (23% in heterogeneous liver ultrasound pattern vs 2.6% in normal liver ultrasound pattern). Conclusions: Research liver ultrasound examinations can identify children with CF at increased risk for developing advanced CF liver disease
    • 

    corecore