4,760 research outputs found

    Surverying the Wreckage: Lessons from the 104th Congress

    Get PDF

    SET based experiments for HTSC materials: II

    Full text link
    The cuprates seem to exhibit statistics, dimensionality and phase transitions in novel ways. The nature of excitations [i.e. quasiparticle or collective], spin-charge separation, stripes [static and dynamics], inhomogeneities, psuedogap, effect of impurity dopings [e.g. Zn, Ni] and any other phenomenon in these materials must be consistently understood. In this note we further discuss our original suggestion of using Single Electron Tunneling Transistor [SET] based experiments to understand the role of charge dynamics in these systems. Assuming that SET operates as an efficient charge detection system we can expect to understand the underlying physics of charge transport and charge fluctuations in these materials for a range of doping. Experiments such as these can be classed in a general sense as mesoscopic and nano characterization of cuprates and related materials. In principle such experiments can show if electron is fractionalized in cuprates as indicated by ARPES data. In contrast to flux trapping experiments SET based experiments are more direct in providing evidence about spin-charge separation. In addition a detailed picture of nano charge dynamics in cuprates may be obtained.Comment: 10 pages revtex plus four figures; ICMAT 2001 Conference Symposium P: P10-0

    Standard Model stability bounds for new physics within LHC reach

    Get PDF
    We analyse the stability lower bounds on the Standard Model Higgs mass by carefully controlling the scale independence of the effective potential. We include resummed leading and next-to-leading-log corrections, and physical pole masses for the Higgs boson, M_H, and the top-quark, M_t. Particular attention is devoted to the cases where the scale of new physics \Lambda is within LHC reach, i.e. \Lambda\leq 10 TeV, which have been the object of recent controversial results. We clarify the origin of discrepancies and confirm our earlier results within the error of our previous estimate. In particular for \Lambda=1 TeV we find that M_H[GeV]>52+0.64(M_t[GeV]-175)-0.50\frac{\alpha_s(M_Z)-0.118}{0.006}. For fixed values of M_t and \alpha_s(M_Z), the error from higher effects, as the lack of exact scale invariance of the effective potential and higher-order radiative corrections, is conservatively estimated to be \simlt 5 GeV.Comment: 17 pages, latex + psfig.sty, 4 figure

    Search for lepton flavor violation via the intense high-energy muon beam

    Full text link
    A deep inerastic scattering process \mutau is discussed to study lepton flavor violation between muons and tau leptons. In supersymmetric models, the Higgs boson mediated diagrams could be important for this reaction. We find that at a muon energy (EμE_{\mu}) higher than 50 GeV, the predicted cross section significantly increases due to the contribution from sea bb-quarks. The number of produced tau leptons can be O(104)\mathcal{O}(10^4) at EμE_{\mu}= 300 GeV from 102010^{20} muons, whereas O(102)\mathcal{O}(10^2) events are given at Eμ=50E_{\mu}= 50 GeV.Comment: Contribution to the 6th International Workshop on Neutrino Factories & Superbeams(NuFact04), Jul. 26-Aug. 1, 2004, Osaka Univerisity, Osaka, Japan, talk given by S.K., to appear in the Proceedings, 3 pages, 4 figure

    Implications of the LHC two-photon signal for two-Higgs-doublet models

    Get PDF
    We study the implications for Two Higgs Doublet Models of the recent announcement at the LHC giving a tantalizing hint for a Higgs boson of mass 125 GeV decaying into two photons. We require that the experimental result be within a factor of two of the theoretical Standard Model prediction, and analyze the type I and type II models as well as the lepton-specific and flipped models, subject to this requirement. It is assumed that there is no new physics other than two Higgs doublets. In all of the models, we display the allowed region of parameter space taking the recent LHC announcement at face value, and we analyze the W+W−W^+W^-, ZZZZ, bˉb\bar{b}b and τ+τ−\tau^+\tau^- expectations in these allowed regions. Throughout the entire range of parameter space allowed by the γγ\gamma\gamma constraint, the number of events for Higgs decays into WWWW, ZZZZ and bbˉb \bar b are not changed from the Standard Model by more than a factor of two. In contrast, in the Lepton Specific model, decays to τ+τ−\tau^+ \tau^- are very sensitive across the entire γγ\gamma \gamma-allowed region.Comment: Latex, 6 pages, 4 figures; v2 - added 2 reference

    Multi-scale Renormalisation Group Improvement of the Effective Potential

    Full text link
    Using the renormalisation group and a conjecture concerning the perturbation series for the effective potential, the leading logarithms in the effective potential are exactly summed for O(N)O(N) scalar and Yukawa theories.Comment: 19 pages, DIAS STP 94-09. Expanded to check large N limit, typo's corrected, to appear in Phys Rev
    • …
    corecore