301 research outputs found

    The structure of epitaxial V2O3 films and their surfaces : a medium energy ion scattering study

    Get PDF
    Medium energy ion scattering, using 100 keV H+ incident ions, has been used to investigate the growth of epitaxial films, up to thicknesses of ~200 Å, of V2O3 on both Pd(111) and Au(111). Scattered-ion energy spectra provide a measure of the average film thickness and the variations in this thickness, and show that, with suitable annealing, the crystalline quality is good. Plots of the scattering yield as a function of scattering angle, so-called blocking curves, have been measured for two different incidence directions and have been used to determine the surface structure. Specifically, scattering simulations for a range of different model structures show poor agreement with experiment for half-metal (….V’O3V) and vanadyl (….V’O3V=O) terminations, with and without surface interlayer relaxations. However, good agreement with experiment is found for the modified oxygen-termination structure, first proposed by Kresse et al., in which a subsurface V half-metal layer is moved up into the outermost V buckled metal layer to produce a VO2 overlayer on the underlying V2O3, with an associated layer structure of ….O3VV’’V’O3

    Main-Belt Comet P/2012 T1 (PANSTARRS)

    Full text link
    We present initial results from observations and numerical analyses aimed at characterizing main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between October 2012 and February 2013 using the University of Hawaii 2.2 m telescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research (SOAR) telescope. The object's intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 microns that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of QCN<1.5x10^23 mol/s, from which we infer a water production rate of QH2O<5x10^25 mol/s, and no evidence of the presence of hydrated minerals. Numerical simulations indicate that P/2012 T1 is largely dynamically stable for >100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveal that it is dynamically linked to the ~155 Myr-old Lixiaohua asteroid family.Comment: 15 pages, 4 figures, accepted for publication in ApJ Letter

    Carbon Control on Terrestrial Ecosystem Function Across Contrasting Site Productivities: The Carbon Connection Revisited

    Get PDF
    Understanding how altered soil organic carbon (SOC) availability affects microbial communities and their function is imperative in predicting impacts of global change on soil carbon (C) storage and ecosystem function. However, the response of soil microbial communities and their function to depleted C availability in situ is unclear. We evaluated the role of soil C inputs in controlling microbial biomass, community composition, physiology, and function by (1) experimentally excluding plant C inputs in situ for 9 yr in four temperate forest ecosystems along a productivity gradient in Oregon, USA; and (2) integrating these findings with published data from similar C‐exclusion studies into a global meta‐analysis. Excluding plant C inputs for 9 yr resulted in a 13% decrease in SOC across the four Oregon sites and an overall shift in the microbial community composition, with a 45% decrease in the fungal : bacterial ratio and a 13% increase in Gram‐positive : Gram‐negative bacterial ratio. Although gross N mineralization decreased under C exclusion, decreases in gross N immobilization were greater, resulting in increased net N mineralization rates in all but the lowest‐productivity site. Microbial biomass showed a variable response to C exclusion that was method dependent; however, we detected a 29% decrease in C‐use efficiency across the sites, with greater declines occurring in less‐productive sites. Although extracellular enzyme activity increased with C exclusion, C exclusion resulted in a 31% decrease in microbial respiration across all sites. Our meta‐analyses of published data with similar C‐exclusion treatments were largely consistent with our experimental results, showing decreased SOC, fungal : bacterial ratios, and microbial respiration, and increased Gram‐positive : Gram‐negative bacterial ratio following exclusion of C inputs to soil. Effect sizes of SOC and respiration correlated negatively with the duration of C exclusion; however, there were immediate effects of C exclusion on microbial community composition and biomass that were unaltered by duration of treatment. Our field‐based experimental results and analyses demonstrate unequivocally the dominant control of C availability on soil microbial biomass, community composition, and function, and provide additional insight into the mechanisms for these effects in forest ecosystems

    Authoritarianism, Populism, and the Global Retreat of Democracy: A Curated Discussion

    Get PDF
    To the surprise of many in the West, the fall of the USSR in 1991 did not lead to the adoption of liberal democratic government around the world and the much anticipated “end of history.” In fact, authoritarianism has made a comeback, and liberal democracy has been on the retreat for at least the last 15 years culminating in the unthinkable: the invasion of a democratic European country by an authoritarian regime. But why does authoritarianism continue to spread, not only as an alternative to liberal democracy, but also within many liberal democracies where authoritarian leaders continue to gain strength and popularity? In this curated piece, contributors discuss some of the potential contributions of management scholarship to understanding authoritarianism, as well as highlight a number of directions for management research in this area.publishedVersio

    A comparative study of fragment screening methods on the p38α kinase: new methods, new insights

    Get PDF
    The stress-activated kinase p38α was used to evaluate a fragment-based drug discovery approach using the BioFocus fragment library. Compounds were screened by surface plasmon resonance (SPR) on a Biacore(™) T100 against p38α and two selectivity targets. A sub-set of our library was the focus of detailed follow-up analyses that included hit confirmation, affinity determination on 24 confirmed, selective hits and competition assays of these hits with respect to a known ATP binding site inhibitor. In addition, functional activity against p38α was assessed in a biochemical assay using a mobility shift platform (LC3000, Caliper LifeSciences). A selection of fragments was also evaluated using fluorescence lifetime (FLEXYTE(™)) and microscale thermophoresis (Nanotemper) technologies. A good correlation between the data for the different assays was found. Crystal structures were solved for four of the small molecules complexed to p38α. Interestingly, as determined both by X-ray analysis and SPR competition experiments, three of the complexes involved the fragment at the ATP binding site, while the fourth compound bound in a distal site that may offer potential as a novel drug target site. A first round of optimization around the remotely bound fragment has led to the identification of a series of triazole-containing compounds. This approach could form the basis for developing novel and active p38α inhibitors. More broadly, it illustrates the power of combining a range of biophysical and biochemical techniques to the discovery of fragments that facilitate the development of novel modulators of kinase and other drug targets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10822-011-9454-9) contains supplementary material, which is available to authorized users

    Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605

    Get PDF
    BACKGROUND: The insulin-like growth factor (IGF) axis is an important signaling pathway in the growth and survival of many cell and tissue types. This pathway has also been implicated in many aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that inhibition of the pathway might yield clinically effective therapeutics. METHODS: We describe A-928605, a novel pyrazolo [3,4-d]pyrimidine small molecule inhibitor of the receptor tyrosine kinases (IGF1R and IR) responsible for IGF signal transduction. This compound was first tested for its activity and selectivity via conventional in vitro kinome profiling and cellular IGF1R autophosphorylation. Additionally, cellular selectivity and efficacy of A-928605 were analyzed in an IGF1R oncogene-addicted cell line by proliferation, signaling and microarray studies. Finally, in vivo efficacy of A-928605 was assessed in the oncogene-addicted cell line and in a neuroblastoma model as a single agent as well as in combination with clinically approved therapeutics targeting EGFR in models of pancreatic and non-small cell lung cancers. RESULTS: A-928605 is a selective IGF1R inhibitor that is able to abrogate activation of the pathway both in vitro and in vivo. This novel compound dosed as a single agent is able to produce significant growth inhibition of neuroblastoma xenografts in vivo. A-928605 is also able to provide additive effects when used in combination with clinically approved agents directed against EGFR in non-small cell lung and human pancreatic tumor models. CONCLUSION: These results suggest that a selective IGF1R inhibitor such as A-928605 may provide a useful clinical therapeutic for IGF pathway affected tumors and warrants further investigation

    Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verlag. This is a slightly modified but expanded version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the Handbook, when it was called: Slepian functions and their use in signal estimation and spectral analysi

    Novel Cell- and Tissue-Based Assays for Detecting Misfolded and Aggregated Protein Accumulation Within Aggresomes and Inclusion Bodies

    Get PDF
    Aggresomes and related inclusion bodies appear to serve as storage depots for misfolded and aggregated proteins within cells, which can potentially be degraded by the autophagy pathway. A homogenous fluorescence-based assay was devised to detect aggregated proteins inside aggresomes and inclusion bodies within an authentic cellular context. The assay employs a novel red fluorescent molecular rotor dye, which is essentially nonfluorescent until it binds to structural features associated with the aggregated protein cargo. Aggresomes and related structures were generated within cultured cells using various potent, cell permeable, proteasome inhibitors: MG-132, lactacystin, epoxomicin and bortezomib, and then selectively detected with the fluorescent probe. Employing the probe in combination with various fluorescein-labeled primary antibodies facilitated co-localization of key components of the autophagy system (ubiquitin, p62, and LC3) with aggregated protein cargo by fluorescence microscopy. Furthermore, cytoplasmic aggregates were highlighted in SK-N-SH human neuroblastoma cells incubated with exogenously supplied amyloid beta peptide 1–42. SMER28, a small molecule modulator of autophagy acting via an mTOR-independent mechanism, prevented the accumulation of amyloid beta peptide within these cells. The described assay allows assessment of the effects of protein aggregation directly in cells, without resorting to the use of non-physiological protein mutations or genetically engineered cell lines. With minor modification, the assay was also adapted to the analysis of frozen or formalin-fixed, paraffin-embedded tissue sections, with demonstration of co-localization of aggregated cargo with β-amyloid and tau proteins in brain tissue sections from Alzheimer’s disease patients

    A retrospective cohort study of stroke onset: implications for characterizing short term effects from ambient air pollution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Case-crossover studies used to investigate associations between an environmental exposure and an acute health response, such as stroke, will often use the day an individual presents to an emergency department (ED) or is admitted to hospital to infer when the stroke occurred. Similarly, they will use patient's place of residence to assign exposure. The validity of using these two data elements, typically extracted from administrative databases or patient charts, to define the time of stroke onset and to assign exposure are critical in this field of research as air pollutant concentrations are temporally and spatially variable. Our a priori hypotheses were that date of presentation differs from the date of stroke onset for a substantial number of patients, and that assigning exposure to ambient pollution using place of residence introduces an important source of exposure measurement error. The objective of this study was to improve our understanding on how these sources of errors influence risk estimates derived using a case-crossover study design.</p> <p>Methods</p> <p>We sought to collect survey data from stroke patients presenting to hospital EDs in Edmonton, Canada on the date, time, location and nature of activities at onset of stroke symptoms. The daily mean ambient concentrations of NO<sub>2 </sub>and PM<sub>2.5 </sub>on the self-reported day of stroke onset was estimated from continuous fixed-site monitoring stations.</p> <p>Results</p> <p>Of the 336 participating patients, 241 were able to recall when their stroke started and 72.6% (95% confidence interval [CI]: 66.9 - 78.3%) experienced stroke onset the same day they presented to the ED. For subjects whose day of stroke onset differed from the day of presentation to the ED, this difference ranged from 1 to 12 days (mean = 1.8; median = 1). In these subjects, there were no systematic differences in assigned pollution levels for either NO<sub>2 </sub>or PM<sub>2.5 </sub>when day of presentation rather than day of stroke onset was used. At the time of stroke onset, 89.9% (95% CI: 86.6 - 93.1%) reported that they were inside, while 84.5% (95% CI: 80.6 - 88.4%) reported that for most of the day they were within a 15 minute drive from home. We estimated that due to the mis-specification of the day of stroke onset, the risk of hospitalization for stroke would be understated by 15% and 20%, for NO<sub>2 </sub>and PM<sub>2.5</sub>, respectively.</p> <p>Conclusions</p> <p>Our data suggest that day of presentation and residential location data obtained from administrative records reasonably captures the time and location of stroke onset for most patients. Under these conditions, any associated errors are unlikely to be an important source of bias when estimating air pollution risks in this population.</p

    IFN-Lambda (IFN-λ) Is Expressed in a Tissue-Dependent Fashion and Primarily Acts on Epithelial Cells In Vivo

    Get PDF
    Interferons (IFN) exert antiviral, immunomodulatory and cytostatic activities. IFN-α/β (type I IFN) and IFN-λ (type III IFN) bind distinct receptors, but regulate similar sets of genes and exhibit strikingly similar biological activities. We analyzed to what extent the IFN-α/β and IFN-λ systems overlap in vivo in terms of expression and response. We observed a certain degree of tissue specificity in the production of IFN-λ. In the brain, IFN-α/β was readily produced after infection with various RNA viruses, whereas expression of IFN-λ was low in this organ. In the liver, virus infection induced the expression of both IFN-α/β and IFN-λ genes. Plasmid electrotransfer-mediated in vivo expression of individual IFN genes allowed the tissue and cell specificities of the responses to systemic IFN-α/β and IFN-λ to be compared. The response to IFN-λ correlated with expression of the α subunit of the IFN-λ receptor (IL-28Rα). The IFN-λ response was prominent in the stomach, intestine and lungs, but very low in the central nervous system and spleen. At the cellular level, the response to IFN-λ in kidney and brain was restricted to epithelial cells. In contrast, the response to IFN-α/β was observed in various cell types in these organs, and was most prominent in endothelial cells. Thus, the IFN-λ system probably evolved to specifically protect epithelia. IFN-λ might contribute to the prevention of viral invasion through skin and mucosal surfaces
    corecore