7 research outputs found

    Optimization and deployment of CNNs at the Edge: The ALOHA experience

    Get PDF
    Deep learning (DL) algorithms have already proved their effectiveness on a wide variety of application domains, including speech recognition, natural language processing, and image classification. To foster their pervasive adoption in applications where low latency, privacy issues and data bandwidth are paramount, the current trend is to perform inference tasks at the edge. This requires deployment of DL algorithms on low-energy and resource-constrained computing nodes, often heterogenous and parallel, that are usually more complex to program and to manage without adequate support and experience. In this paper, we present ALOHA, an integrated tool flow that tries to facilitate the design of DL applications and their porting on embedded heterogenous architectures. The proposed tool flow aims at automating different design steps and reducing development costs. ALOHA considers hardware-related variables and security, power efficiency, and adaptivity aspects during the whole development process, from pre-training hyperparameter optimization and algorithm configuration to deployment

    Development of the bioartificial vaginal wall: An in vitro stage

    No full text
    Objective. To obtain a tissue-engineered construct based on a nonwoven polycaprolactone carrier, human epithelial and stromal cells to make an artificial vagina. Material and methods. Fibrous material based on polycaprolactone was obtained by an electrospinning technique. A capillary method was used to colonize the full-thickness tissue-engineering design by stromal cells and a static method was employed to colonize the surface layer of the construct by vaginal epithelial cells. Results. The vaginal epithelial cells expressed EpSAM and p63; the stromal cells did vimentin and smooth muscle actin. After colonization, the stromal cells were evenly distributed in a 1.5-mm thick matrix; the epithelial cells were arranged in a dense layer on the inner surface of the construct, sinking to a depth of 88.9Β±32.5 ΞΌm. Conclusion. The tissue-engineered construct obtained is similar to the native vagina in architectonics and cell composition. Β© Bionika Media Ltd

    Π ΠΠ—Π ΠΠ‘ΠžΠ’ΠšΠ Π‘Π˜ΠžΠΠ Π’Π˜Π€Π˜Π¦Π˜ΠΠ›Π¬ΠΠžΠ™ Π‘Π’Π•ΠΠšΠ˜ Π’Π›ΠΠ“ΠΠ›Π˜Π©Π: IN VITRO Π‘Π’ΠΠ”Π˜Π―

    No full text
    Objective. To obtain a tissue-engineered construct based on a nonwoven polycaprolactone carrier, human epithelial and stromal cells to make an artificial vagina. Material and methods. Fibrous material based on polycaprolactone was obtained by an electrospinning technique. A capillary method was used to colonize the full-thickness tissue-engineering design by stromal cells and a static method was employed to colonize the surface layer of the construct by vaginal epithelial cells. Results. The vaginal epithelial cells expressed EpSAM and p63; the stromal cells did vimentin and smooth muscle actin. After colonization, the stromal cells were evenly distributed in a 1.5-mm thick matrix; the epithelial cells were arranged in a dense layer on the inner surface of the construct, sinking to a depth of 88.9Β±32.5 ΞΌm. Conclusion. The tissue-engineered construct obtained is similar to the native vagina in architectonics and cell composition. Β© Bionika Media Ltd.ЦСль исслСдования. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции Π½Π° основС Π½Π΅Ρ‚ΠΊΠ°Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ носитСля, ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° для создания искусствСнного Π²Π»Π°Π³Π°Π»ΠΈΡ‰Π°. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Волокнистый ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π° ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования. Для засСлСния ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ всСй Ρ‚ΠΎΠ»Ρ‰ΠΈ Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции использовали капиллярный ΠΌΠ΅Ρ‚ΠΎΠ΄, для засСлСния ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π²Π»Π°Π³Π°Π»ΠΈΡ‰Π° повСрхностного слоя конструкции - статичный ΠΌΠ΅Ρ‚ΠΎΠ΄. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π­ΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π²Π»Π°Π³Π°Π»ΠΈΡ‰Π° экспрСссировали EpCAM ΠΈ p63, ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ экспрСссировали Π²ΠΈΠΌΠ΅Π½Ρ‚ΠΈΠ½ ΠΈ Π³Π»Π°Π΄ΠΊΠΎΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹ΠΉ Π°ΠΊΡ‚ΠΈΠ½. ПослС засСлСния ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π±Ρ‹Π»ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ распрСдСлСны Π² матриксС Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ 1,5 ΠΌΠΌ; ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°Π»ΠΈΡΡŒ ΠΏΠ»ΠΎΡ‚Π½Ρ‹ΠΌ пластом Π½Π° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ повСрхности конструкции, ΠΏΠΎΠ³Ρ€ΡƒΠΆΠ°ΡΡΡŒ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ 88,9Β±32,5 ΠΌΠΊΠΌ. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ тканСинТСнСрная конструкция Π±Π»ΠΈΠ·ΠΊΠ° ΠΏΠΎ своСй Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΠΎΠ½ΠΈΠΊΠ΅ ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ составу Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΌΡƒ Π²Π»Π°Π³Π°Π»ΠΈΡ‰Ρƒ

    Nonwoven polycaprolactone scaffolds for tissue engineering: The choice of the structure and the method of cell seeding

    No full text
    Nonwoven polycaprolactone materials produced by electrospinning are perspective internal prosthetic implants. Seeding these implants with multipotent mesenchymal stromal cells stimulates the replacement of the prosthesis with recipient's own connective tissue. Electrospinning method was used for producing polycaprolactone matrices differing in thickness, pore diameter, fiber size, and biomechanical properties. Labeled cells were seeded on scaffolds in three ways: (1) static, (2) dynamic, and (3) directed flow of the cell suspension generated by capillary action. Cell distribution on the surface and the interior of the scaffolds was studied; the metabolic activity of cells was measured by MTT assay. Static seeding method yielded fully confluence of cells covered the entire scaffold surface, but the cells were located primarily in the upper third of the matrix. Dynamic method proved to be effective only for scaffolds of thickness greater than 500 microns, irrespective of the pore diameter. The third method was effective only for scaffolds with the pore diameter of 20-30 microns, regardless of the material thickness. Resorbable nonwoven polycaprolactone electrospun materials have appropriate biomechanical properties and similar to native tissue matrix structures for internal prosthesis. The choice of the most effective cell seeding method depends on the spatial characteristics - the material thickness, pore diameter, and fibers size, which are determined by the electrospinning conditions

    НСтканыС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π° для Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ: Π²Ρ‹Π±ΠΎΡ€ структуры ΠΈ способа засСлСния

    No full text
    Nonwoven polycaprolactone materials produced by electrospinning are perspective internal prosthetic implants. Seeding these implants with multipotent mesenchymal stromal cells stimulates the replacement of the prosthesis with recipient's own connective tissue. Electrospinning method was used for producing polycaprolactone matrices differing in thickness, pore diameter, fiber size, and biomechanical properties. Labeled cells were seeded on scaffolds in three ways: (1) static, (2) dynamic, and (3) directed flow of the cell suspension generated by capillary action. Cell distribution on the surface and the interior of the scaffolds was studied; the metabolic activity of cells was measured by MTT assay. Static seeding method yielded fully confluence of cells covered the entire scaffold surface, but the cells were located primarily in the upper third of the matrix. Dynamic method proved to be effective only for scaffolds of thickness greater than 500 microns, irrespective of the pore diameter. The third method was effective only for scaffolds with the pore diameter of 20-30 microns, regardless of the material thickness. Resorbable nonwoven polycaprolactone electrospun materials have appropriate biomechanical properties and similar to native tissue matrix structures for internal prosthesis. The choice of the most effective cell seeding method depends on the spatial characteristics - the material thickness, pore diameter, and fibers size, which are determined by the electrospinning conditions.НСтканыС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования, ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСрспСктивными ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Π°ΠΌΠΈ для эндопротСзирования. ЗасСлСниС Ρ‚Π°ΠΊΠΈΡ… ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΡ‚Π΅Π½Ρ‚Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ способствуСт Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΡ‚Π΅Π·Π° собствСнной ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΡŒΡŽ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚Π°. ЦСлью настоящСго исслСдования являлось сравнСниС эффСктивности Ρ‚Ρ€Π΅Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² засСлСния ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π½Π΅Ρ‚ΠΊΠ°Π½Ρ‹Ρ… носитСлСй Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π°, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ пространствСнными характСристиками. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Ρ‚Ρ€ΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ†, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΠΏΠΎΡ€ ΠΈ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, биомСханичСскими свойствами. ЗасСлСниС носитСлСй ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ΠΌΠΈ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΡ‚Π΅Π½Ρ‚Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ ΠΏΡƒΠΏΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Ρ‚ΠΈΠΊΠ° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ трСмя способами: статичным, динамичСским ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ с использованиСм капиллярного эффСкта. ΠžΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ распрСдСлСниС ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠΎ повСрхности ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ измСряли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ МВВ-тСста. Π‘Ρ‚Π°Ρ‚ΠΈΡ‡Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ носитСли с Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ΠΌ повСрхности, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π² основном Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°Π»ΠΈΡΡŒ Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ Ρ‚Ρ€Π΅Ρ‚ΠΈ матрикса. ДинамичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ оказался эффСктивСн Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для носитСлСй Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ Π±ΠΎΠ»Π΅Π΅ 500 ΠΌΠΊΠΌ, нСзависимо ΠΎΡ‚ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΏΠΎΡ€. ΠœΠ΅Ρ‚ΠΎΠ΄ засСлСния с использованиСм капиллярного эффСкта Π±Ρ‹Π» эффСктивСн Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для носитСлСй с Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΠΏΠΎΡ€ 20-30 ΠΌΠΊΠΌ, нСзависимо ΠΎΡ‚ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Π‘ΠΈΠΎΡ€Π΅Π·ΠΎΡ€Π±ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Π½Π΅Ρ‚ΠΊΠ°Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС ΠΏΠΎ-Π»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ подходящими биомСханичСскими свойствами для выполнСния пластики Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² стСнок Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ полости, ΠΈΠΌΠ΅ΡŽΡ‚ сходноС с матриксом Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ строСниС. Π’Ρ‹Π±ΠΎΡ€ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° засСлСния носитСлСй ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ зависит ΠΎΡ‚ Π΅Π³ΠΎ пространствСнных характСристик - Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΏΠΎΡ€ ΠΈ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ условиями элСктроформования ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°

    Bioengineered Bile Duct: the project resume and state of the art in 2018

    No full text
    Aim. Development of the physiologically relevant tissue-engineered graft for repair of bile duct injures (Dyuzheva et al., 2016). <br><br>Conclusions. Designed scaffold showed no cytotoxicity, both BM-MSCs and cholangiocytes migrated into the depth of fibrous material. The constructs was biodegradable in various model mediums: deionized water, phosphate buffer, bile, full culture medium. The next step is pre-clinical trials on rabbits and minipigs for assessment of implantation safety and efficacy. We suppose that this tubular multilayered tissue-engineered construct will be capable to integration in native tissues after implantation and may be used to injured bile duct reparation
    corecore