10,108 research outputs found

    Frequency based localization of structural discrepancies

    Get PDF
    The intent of modal analysis is to develop a reliable model of a structure by working with the analytical and experimental modal properties of frequency, damping and mode shape. In addition to identifying these modal properties, it would be desirable to determine spatially which parts of the structure are modelled poorly or well. It is shown how the pattern of discrepancies in the analytical and experimental test values for the pole and the driving point zero frequencies of a structure can be linked to discrepancies in the mass or stiffness of the structural elements. The success of the procedure depends on the numerical conditioning of a modal reference matrix. Strategies to insure adequate numerical conditioning require a formulation which avoids geometric and energy storage symmetries of the structure, and ignores structural elements which contribute negligibly small potential or kinetic energy to the excited modes. Physical insight into the numerical conditioning problem is provided by a numerical example and by localization of a mass discrepancy in a real structure based on lab tests

    Structural response and input identification

    Get PDF
    Three major goals were delineated: (1) to develop a general method for determining the response of a structure to combined base and acoustic random excitation: (2) to develop parametric relationships to aid in the design of plates which are subjected to random force or random base excitation: (3) to develop a method to identify the individual acoustic and base input to a structure with only a limited number of measurement channels, when both types of excitation act simultaneously

    Genetic ancestry of participants in the National Children's Study.

    Get PDF
    BackgroundThe National Children's Study (NCS) is a prospective epidemiological study in the USA tasked with identifying a nationally representative sample of 100,000 children, and following them from their gestation until they are 21 years of age. The objective of the study is to measure environmental and genetic influences on growth, development, and health. Determination of the ancestry of these NCS participants is important for assessing the diversity of study participants and for examining the effect of ancestry on various health outcomes.ResultsWe estimated the genetic ancestry of a convenience sample of 641 parents enrolled at the 7 original NCS Vanguard sites, by analyzing 30,000 markers on exome arrays, using the 1000 Genomes Project superpopulations as reference populations, and compared this with the measures of self-reported ethnicity and race. For 99% of the individuals, self-reported ethnicity and race agreed with the predicted superpopulation. NCS individuals self-reporting as Asian had genetic ancestry of either South Asian or East Asian groups, while those reporting as either Hispanic White or Hispanic Other had similar genetic ancestry. Of the 33 individuals who self-reported as Multiracial or Non-Hispanic Other, 33% matched the South Asian or East Asian groups, while these groups represented only 4.4% of the other reported categories.ConclusionsOur data suggest that self-reported ethnicity and race have some limitations in accurately capturing Hispanic and South Asian populations. Overall, however, our data indicate that despite the complexity of the US population, individuals know their ancestral origins, and that self-reported ethnicity and race is a reliable indicator of genetic ancestry

    Space station integrated propulsion and fluid systems study

    Get PDF
    The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems

    ShapeCodes: Self-Supervised Feature Learning by Lifting Views to Viewgrids

    Full text link
    We introduce an unsupervised feature learning approach that embeds 3D shape information into a single-view image representation. The main idea is a self-supervised training objective that, given only a single 2D image, requires all unseen views of the object to be predictable from learned features. We implement this idea as an encoder-decoder convolutional neural network. The network maps an input image of an unknown category and unknown viewpoint to a latent space, from which a deconvolutional decoder can best "lift" the image to its complete viewgrid showing the object from all viewing angles. Our class-agnostic training procedure encourages the representation to capture fundamental shape primitives and semantic regularities in a data-driven manner---without manual semantic labels. Our results on two widely-used shape datasets show 1) our approach successfully learns to perform "mental rotation" even for objects unseen during training, and 2) the learned latent space is a powerful representation for object recognition, outperforming several existing unsupervised feature learning methods.Comment: To appear at ECCV 201

    Mars Spacecraft Power System Development Final Report

    Get PDF
    Development of optimum Mariner spacecraft power system for application to future flyby and orbiter mission

    Space suit

    Get PDF
    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space

    Rational foundation of GR in terms of statistical mechanic in the AdS/CFT framework

    Full text link
    In this article, we work out the microscopic statistical foundation of the supergravity description of the simplest 1/2 BPS sector in the AdS(5)/CFT(4). Then, all the corresponding supergravity observables are related to thermodynamical observables, and General Relativity is understood as a mean-field theory. In particular, and as an example, the Superstar is studied and its thermodynamical properties clarified.Comment: 13 pages, 6 eps figures, latex, some improvements introduced, reference added, typos correcte

    M-theory Supertubes with Three and Four Charges

    Full text link
    Using the covariant M5-brane action, we construct configurations corresponding to supertubes with three and four charges. We derive the BPS equations and study the full structure of the solutions. In particular, we find new solutions involving arbitrariness in field strengths.Comment: 24 pages, references added and typos correcte

    Dynamic Spin Response for Heisenberg Ladders

    Full text link
    We employ the recently proposed plaquette basis to investigate static and dynamic properties of isotropic 2-leg Heisenberg spin ladders. Simple non-interacting multi-plaquette states provide a remarkably accurate picture of the energy/site and dynamic spin response of these systems. Insights afforded by this simple picture suggest a very efficient truncation scheme for more precise calculations. When the small truncation errors are accounted for using recently developed Contractor Renormalization techniques, very accurate results requiring a small fraction of the computational effort of exact calculations are obtained. These methods allow us to determine the energy/site, gap, and spin response of 2x16 ladders. The former two values are in good agreement with density matrix renormalization group results. The spin response calculations show that nearly all the strength is concentrated in the lowest triplet level and that coherent many-body effects enhance the response/site by nearly a factor of 1.6 over that found for 2x2 systems.Comment: 9 pages with two enclosed postscript figure
    corecore