71 research outputs found

    FORMULATION AND EVALUATION OF ORODISPERSIBLE LABETALOL TABLET FOR HYPERTENSIVE CRISIS

    Get PDF
    Labetalol HCl competitively blocks adrenergic stimulation of β-receptors within the myocardium (β1-receptors) and within bronchial and vascular smooth muscle (β2-receptors), and α1-receptors within vascular smooth muscle. Mouth dissolving drug delivery systems (MDTs) have acquired an important position in the market by overcoming previously encountered administration problems and contributing to extension of patent life. MDTs have the unique property of rapidly disintegrating and/or dissolving and releasing the drug as soon as they come in contact with saliva, thus obviating the requirement of water during administration. Taste masking was done by using Kyron-T 134 in ratio 1:3. The tablets were prepared by using direct compression method, using different Superdisintegrantsand they were then evaluated for pre and post compression parameters. More than 80% of drug was released from almost all the formulations within 5 min. Results of this study indicate among the superdisintegrants tried, Indion-414 showed the best result in 2% concentration

    Algebraic approach in the study of time-dependent nonlinear integrable systems: Case of the singular oscillator

    Full text link
    The classical and the quantal problem of a particle interacting in one-dimension with an external time-dependent quadratic potential and a constant inverse square potential is studied from the Lie-algebraic point of view. The integrability of this system is established by evaluating the exact invariant closely related to the Lewis and Riesenfeld invariant for the time-dependent harmonic oscillator. We study extensively the special and interesting case of a kicked quadratic potential from which we derive a new integrable, nonlinear, area preserving, two-dimensional map which may, for instance, be used in numerical algorithms that integrate the Calogero-Sutherland-Moser Hamiltonian. The dynamics, both classical and quantal, is studied via the time-evolution operator which we evaluate using a recent method of integrating the quantum Liouville-Bloch equations \cite{rau}. The results show the exact one-to-one correspondence between the classical and the quantal dynamics. Our analysis also sheds light on the connection between properties of the SU(1,1) algebra and that of simple dynamical systems.Comment: 17 pages, 4 figures, Accepted in PR

    Immiscible thermo-viscous fingering in Hele-Shaw cells

    Get PDF
    We investigate immiscible radial displacement in a Hele-Shaw cell with a temperature dependent viscosity using two coupled high resolution numerical methods. Thermal gradients created in the domain through the injection of a low viscosity fluid at a different temperature to the resident high viscosity fluid can lead to the formation of unstable thermo-viscous fingers, which we explore in the context of immiscible flows. The transient, multi-zone heat transfer is evaluated using a newly developed auxiliary radial basis function-finite collocation (RBF-FC) method, which locally captures variation in flux and field variable over the moving interface, without the need for ghost node extrapolation. The viscosity couples the transient heat transfer to the Darcy pressure/velocity field, which is solved using a boundary element - RBF-FC method, providing an accurate and robust interface tracking scheme for the full thermo-viscous problem. We explore the thermo-viscous problem space using systematic numerical experiments, revealing that the early stage finger growth is controlled by the pressure gradient induced by the varying temperature and mobility field. In hot injection regimes, negative temperature gradients normal to the interface act to accelerate the interface, promoting finger bifurcation and enhancing the viscous fingering instability. Correspondingly, cold injection regimes stabilise the flow compared to isothermal cases, hindering finger formation. The interfacial mobility distribution controls the late stage bifurcation mode, with non-uniformities induced by the thermal diffusivity creating alternate bifurcation modes. Further numerical experiments reveal the neutral stability of the thermal effects on the fingering evolution, with classical viscous fingering dynamics eventually dominating the evolution. We conclude the paper with a mechanistic summary of the immiscible thermo-viscous fingering regime, providing the first detailed analysis of the thermal problem in immiscible flows

    Ocular Filariasis in Human Caused by Breinlia (Johnstonema) annulipapillata Nematode, Australia

    No full text
    We report a human case of ocular filariasis, caused by a species of Breinlia nematode, from Queensland, Australia. Morphological and molecular evidence indicated that the nematode Breinlia (Johnstonema) annulipapillata, or a closely related taxon, likely transmitted from a macropodid marsupial host was involved, which might represent an accidental finding or an emerging zoonosis
    corecore