128 research outputs found

    Ganoderma lucidum Protects Dopaminergic Neuron Degeneration through Inhibition of Microglial Activation

    Get PDF
    Abundant evidence has suggested that neuroinflammation participates in the pathogenesis of Parkinson's disease (PD). The emerging evidence has supported that microglia may play key roles in the progressive neurodegeneration in PD and might be a promising therapeutic target. Ganoderma lucidum (GL), a traditional Chinese medicinal herb, has been shown potential neuroprotective effects in our clinical trials that make us to speculate that it might possess potent anti-inflammatory and immunomodulating properties. To test this hypothesis, we investigated the potential neuroprotective effect of GL and possible underlying mechanism of action through protecting microglial activation using co-cultures of dopaminergic neurons and microglia. The microglia is activated by LPS and MPP+-treated MES 23.5 cell membranes. Meanwhile, GL extracts significantly prevent the production of microglia-derived proinflammatory and cytotoxic factors [nitric oxide, tumor necrosis factor-α (TNF-α), interlukin 1ÎČ (IL-1ÎČ)] in a dose-dependent manner and down-regulate the TNF-α and IL-1ÎČ expressions on mRNA level as well. In conclusion, our results support that GL may be a promising agent for the treatment of PD through anti-inflammation

    Predicting land use changes in northern China using logistic regression, cellular automata, and a Markov model

    Get PDF
    Abstract(#br)Land use changes are complex processes affected by both natural and human-induced driving factors. This research is focused on simulating land use changes in southern Shenyang in northern China using an integration of logistic regression, cellular automata, and a Markov model and the use of fine resolution land use data to assess potential environmental impacts and provide a scientific basis for environmental management. A set of environmental and socio-economic driving factors was used to generate transition potential maps for land use change simulations in 2010 and 2020 using logistic regression. An average relative operating characteristic value of 0.824 was obtained, indicating the validity of the logistic regression model. The logistic–cellular automata (CA)–Markov model..

    Unraveling the Effects of Mobile Application Usage on Users’ Health Status: Insights from Conservation of Resources Theory

    Get PDF
    Numerous studies have documented adverse consequences arising from increased technology usage and advocated for a reduction in such usage as a plausible remedy. However, such recommendations are often infeasible and oversimplistic given mounting evidence attesting to users’ growing reliance on technology in both their personal and professional lives. Building on conservation of resources (COR) theory, we construct a research model to explain how mobile application usage, as delineated by its breadth and depth, affects users’ nomophobia and sleep deprivation, which can have negative impacts on users’ health status. We also consider the moderating influence of physical activity in mitigating the effects of mobile application usage on users’ health. We validated our hypotheses via data collected by surveying 5,842 respondents. Empirical findings reveal that (1) nomophobia is positively influenced by mobile application usage breadth but negatively influenced by mobile application usage depth, (2) sleep deprivation is negatively influenced by mobile application usage breadth but positively influenced by mobile application usage depth, and (3) sleep deprivation and nomophobia negatively impact users’ health status, whereas (4) physical activity attenuates the impact of mobile application usage on sleep deprivation but not nomophobia. The findings from this study not only enrich the extant literature on the health outcomes of mobile application usage by unveiling the impact of mobile application usage patterns and physical activity on users’ health but they also inform practitioners on how calibrating usage breadth and depth, along with encouraging physical activity, can promote healthy habits among users

    muSR and Magnetometry Study of the Type-I Superconductor BeAu

    Full text link
    We present muon spin rotation and relaxation (muSR) measurements as well as demagnetising field corrected magnetisation measurements on polycrystalline samples of the noncentrosymmetric superconductor BeAu. From muSR measurements in a transverse field, we determine that BeAu is a type-I superconductor with Hc = 256 Oe, amending the previous understanding of the compound as a type-II superconductor. To account for demagnetising effects in magnetisation measurements, we produce an ellipsoidal sample, for which a demagnetisation factor can be calculated. After correcting for demagnetising effects, our magnetisation results are in agreement with our muSR measurements. Using both types of measurements we construct a phase diagram from T = 30 mK to Tc = 3.25 K. We then study the effect of hydrostatic pressure and find that 450 MPa decreases Tc by 34 mK, comparable to the change seen in type-I elemental superconductors Sn, In and Ta, suggesting BeAu is far from a quantum critical point accessible by the application of pressure.Comment: 10 pages, 8 figure

    Approximate solutions to large nonsymmetric differential Riccati problems with applications to transport theory

    Full text link
    In the present paper, we consider large scale nonsymmetric differential matrix Riccati equations with low rank right hand sides. These matrix equations appear in many applications such as control theory, transport theory, applied probability and others. We show how to apply Krylov-type methods such as the extended block Arnoldi algorithm to get low rank approximate solutions. The initial problem is projected onto small subspaces to get low dimensional nonsymmetric differential equations that are solved using the exponential approximation or via other integration schemes such as Backward Differentiation Formula (BDF) or Rosenbrok method. We also show how these technique could be easily used to solve some problems from the well known transport equation. Some numerical experiments are given to illustrate the application of the proposed methods to large-scale problem

    Recovery of an embedded obstacle and the surrounding medium for Maxwell's system

    Full text link
    In this paper, we are concerned with the inverse electromagnetic scattering problem of recovering a complex scatterer by the corresponding electric far-field data. The complex scatterer consists of an inhomogeneous medium and a possibly embedded perfectly electric conducting (PEC) obstacle. The far-field data are collected corresponding to incident plane waves with a fixed incident direction and a fixed polarisation, but frequencies from an open interval. It is shown that the embedded obstacle can be uniquely recovered by the aforementioned far-field data, independent of the surrounding medium. Furthermore, if the surrounding medium is piecewise homogeneous, then the medium can be recovered as well. Those unique recovery results are new to the literature. Our argument is based on low-frequency expansions of the electromagnetic fields and certain harmonic analysis techniques.Comment: 15 page

    Neutronic Design for Heat Pipe Reactor With Annular and Accident Tolerant Fuels

    Get PDF
    Several core designs of heat pipe reactors with megawatt power were proposed for extreme environments, such as the deep space, the deep sea, and the earthquake locations. However, the existing designs have either the difficulty of manufacture or potential issues of transport. In the present work, a heat pipe design is proposed with an annular fuel element to replace the cylindrical and hexagon fuel elements. In addition, candidate accident tolerant fuels, such as the UN and U3Si2 fuels, are implemented. The neutronic properties of the new reactor design are systematically investigated by the OpenMC Monte Carlo code simulations. It is found that BeO presents a better effect of reducing the axial power deviation than Al2O3. The criticality of the proposed design is verified by two configurations of control drums. The depletion calculations show that each design can operate for decades of years

    Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach

    Get PDF
    Genome-wide association studies (GWASs) have been widely used to determine the genetic architecture of quantitative traits in dairy cattle. In this study, with the aim of identifying candidate genes that affect milk protein composition traits, we conducted a GWAS for nine such traits (αs1-casein, αs2-casein, ÎČ-casein, Îș-casein, α-lactalbumin, ÎČ-lactoglobulin, casein index, protein percentage, and protein yield) in 614 Chinese Holstein cows using a single-step strategy. We used the Illumina BovineSNP50 Bead chip and imputed genotypes from high-density single-nucleotide polymorphisms (SNPs) ranging from 50 to 777 K, and subsequent to genotype imputation and quality control, we screened a total of 586,304 informative high-quality SNPs. Phenotypic observations for six major milk proteins (αs1-casein, αs2-casein, ÎČ-casein, Îș-casein, α-lactalbumin, and ÎČ-lactoglobulin) were evaluated as weight proportions of the total protein fraction (wt/wt%) using a commercial enzyme-linked immunosorbent assay kit. Informative windows comprising five adjacent SNPs explaining no < 0.5% of the genomic variance per window were selected for gene annotation and gene network and pathway analyses. Gene network analysis performed using the STRING Genomics 10.0 database revealed a co-expression network comprising 46 interactions among 62 of the most plausible candidate genes. A total of 178 genomic windows and 194 SNPs on 24 bovine autosomes were significantly associated with milk protein composition or protein percentage. Regions affecting milk protein composition traits were mainly observed on chromosomes BTA 1, 6, 11, 13, 14, and 18. Of these, several windows were close to or within the CSN1S1, CSN1S2, CSN2, CSN3, LAP3, DGAT1, RPL8, and HSF1 genes, which have well-known effects on milk protein composition traits of dairy cattle. Taken together with previously reported quantitative trait loci and the biological functions of the identified genes, we propose 19 novel candidate genes affecting milk protein composition traits: ARL6, SST, EHHADH, PCDHB4, PCDHB6, PCDHB7, PCDHB16, SLC36A2, GALNT14, FPGS, LARP4B, IDI1, COG4, FUK, WDR62, CLIP3, SLC25A21, IL5RA, and ACADSB. Our findings provide important insights into milk protein synthesis and indicate potential targets for improving milk quality

    Disentangling superconducting and magnetic orders in NaFe_1-xNi_xAs using muon spin rotation

    Full text link
    Muon spin rotation and relaxation studies have been performed on a "111" family of iron-based superconductors NaFe_1-xNi_xAs. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x = 0 and 0.4 %, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for higher x than 0.4 % magnetic order becomes more disordered and is completely suppressed for x = 1.5 %. The magnetic volume fraction continuously decreases with increasing x. The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T-x phase diagram for NaFe_1-xNi_xAs . A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting T_C for x = 0.6, 1.0, and 1.3 %, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant non-magnetic state below T_C for x = 1.3 %. The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s-wave superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an itinerant-electron approach, in which Fermi surface nesting drives antiferromagnetic ordering.Comment: 20 pages, 14 figures, Correspondence should be addressed to Prof. Yasutomo Uemura: [email protected]
    • 

    corecore