119 research outputs found

    Potential therapeutic strategy for non-Hodgkin lymphoma by anti-CD20scFvFc/CD28/CD3zeta gene tranfected T cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anti-CD20 monoclonal antibody treatment has not only increased survival and cure rates in many non-Hodgkin lymphomas, but also has prompted an explosion in the development of novel antibodies and biologically active substances with specific cellular targets in the field of malignancies treatment. Since the robust immune responses are elicited by the gene-modified T cells, gene based T cell therapy may also provide a powerful tool for cancer immunotherapy.</p> <p>Methods</p> <p>In this study, we developed a vector construction encoding a chimeric T cell receptor that recognizes the CD20 antigen and delivers co-stimulatory signals to achieve T cell activation. One non-Hodgkin lymphoma cell line Raji cells co-cultured with peripheral blood-derived T cells were stably transfected with anti-CD20scFvFc/CD28/CD3zeta gene or anti-CD20scFvFc gene. T cells expressing anti-CD20scFvFc/CD28/CD3zeta or anti-CD20scFvFc gene co-cultured with CD20 positive Raji cells for different times. Cell lysis assay was carried by [<sup>3</sup>H]TdR release assay. The expressions of Fas, Bcl-2 and Caspase-3 of Raji cells were detected by flow cytometric. The secretion of IFN-gamma and IL-2 in co-culture medium was tested by ELISA assay. Activity of AP-1 was analyzed by EMSA.</p> <p>Results</p> <p>Following efficient transduction of peripheral blood-derived T cells with anti-CD20scFvFc/CD28/CD3zeta gene, an obvious cell lysis of Raji cells was observed in co-culture. T cells transduced anti-CD20scFvFc/CD28/CD3zeta gene had superior secretion of IFN-gamma and IL-2 compared to T cells transduced anti-CD20scFvFc gene. Also it led to a much stronger Fas-induced apoptosis signaling transduction in target cancer cells.</p> <p>Conclusion</p> <p>So adoptively T cells transduced anti-CD20scFvFc/CD28/CD3zeta gene mediates enhanced anti-tumor activities against CD20 positive tumor cells, suggesting a potential of gene-based immunotherapy for non-Hodgkin lymphoma.</p

    Acute Myeloid Leukemia Cells Express ICOS Ligand to Promote the Expansion of Regulatory T Cells

    Get PDF
    CD4+CD25+Foxp3+ regulatory T cells (Tregs) accumulate in bone marrow microenvironment in acute myeloid leukemia (AML). However, little is known about how the tumor environment including tumor cells themselves affects this process. Here we demonstrated that AML cells expressed inducible T-cell costimulator ligand (ICOSL) that can provide costimulation through ICOS for the conversion and expansion of Tregs sustaining high Foxp3 and CD25 expression as well as a suppressive function. TNF-a stimulation up-regulated the expression of ICOSL. Furthermore, both the conversion and expansion of CD4+CD25+Foxp3+ T cells and CD4+ICOS+Foxp3+ T cells were induced by co-culture with AML cells overexpressed ICOSL. CD4+CD25+ICOS+ T cells possessed stronger ability to secrete IL-10 than CD4+CD25+ICOS− T cells. The mechanism by which IL-10 promoted the proliferation of AML cells was dependent on the activation of the Akt, Erk1/2, p38, and Stat3 signaling pathways. Blockade of ICOS signaling using anti-ICOSL antibody impaired the generation of Tregs and retarded the progression of an AML mice model injected with C1498 cells. The expression of ICOSL of patient AML cells and ICOS+ Tregs were found to be predictors for overall survival and disease-free survival in patients with AML, with ICOS+ Treg cell subset being a stronger predictor than total Tregs. These results suggest that ICOSL expression by AML cells may directly drive Treg expansion as a mechanism of immune evasion and ICOS+ Treg cell frequency is a better prognostic predictor in patients with AML

    Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals RNA N6-methyladenosine modification associated with prognosis and drug resistance in acute myeloid leukemia

    Get PDF
    IntroductionAcute myeloid leukemia (AML) is a type of blood cancer that is identified by the unrestricted growth of immature myeloid cells within the bone marrow. Despite therapeutic advances, AML prognosis remains highly variable, and there is a lack of biomarkers for customizing treatment. RNA N6-methyladenosine (m6A) modification is a reversible and dynamic process that plays a critical role in cancer progression and drug resistance.MethodsTo investigate the m6A modification patterns in AML and their potential clinical significance, we used the AUCell method to describe the m6A modification activity of cells in AML patients based on 23 m6A modification enzymes and further integrated with bulk RNA-seq data.ResultsWe found that m6A modification was more effective in leukemic cells than in immune cells and induced significant changes in gene expression in leukemic cells rather than immune cells. Furthermore, network analysis revealed a correlation between transcription factor activation and the m6A modification status in leukemia cells, while active m6A-modified immune cells exhibited a higher interaction density in their gene regulatory networks. Hierarchical clustering based on m6A-related genes identified three distinct AML subtypes. The immune dysregulation subtype, characterized by RUNX1 mutation and KMT2A copy number variation, was associated with a worse prognosis and exhibited a specific gene expression pattern with high expression level of IGF2BP3 and FMR1, and low expression level of ELAVL1 and YTHDF2. Notably, patients with the immune dysregulation subtype were sensitive to immunotherapy and chemotherapy.DiscussionCollectively, our findings suggest that m6A modification could be a potential therapeutic target for AML, and the identified subtypes could guide personalized therapy

    Physical Mapping of a Novel Locus Conferring Leaf Rust Resistance on the Long Arm of Agropyron cristatum Chromosome 2P

    Get PDF
    Wheat leaf rust is one of the most common wheat diseases worldwide and can cause up to 40% wheat yield loss. To combat the growth and spread of leaf rust disease, continual exploration and identification of new and effective resistance genes are needed. Here, we report for the first time a locus conferring leaf rust resistance located on the long arm of Agropyron cristatum chromosome 2P in Triticum aestivum–A. cristatum 2P translocation lines. This study used 50 leaf rust races, including two Chinese major dominant leaf rust races, named by THT and PHT, and other 48 different leaf rust races collected from 11 provinces, 1autonomous region and 1 municipality of China to test the resistance to T. aestivum–A. cristatum 2P chromosome translocation lines and their backcross populations, the results indicated that the novel leaf rust resistance locus was immune or nearly immune to all tested leaf rust races. Four long arm translocation lines with different breakpoints of A. cristatum chromosome 2PL and their backcross populations were tested with leaf rust race THT at the seedling and adult stages and genotyped with 2P-specific STS markers. The results showed that the novel leaf rust resistance locus of the T. aestivum–A. cristatum 2P translocation lines was located in the chromosomal bin FL 0.66–0.86 of 2PL. Therefore, T. aestivum–A. cristatum 2P chromosome translocation lines conferring leaf rust resistance locus could provide a novel disease-resistance resource for future wheat breeding programs

    Bifurcation and nonlinear analysis of a time-delayed thermoacoustic system

    Get PDF
    In this paper, of primary concern is a time-delayed thermoacoustic system, viz. a horizontal Rijke tube. A continuation approach is employed to capture the nonlinear behavior inherent to the system. Unlike the conventional approach by the Galerkin method, a dynamic system is naturally built up by discretizing the acoustic momentum and energy equations incorporating appropriate boundary conditions using a finite difference method. In addition, the interaction of Rijke tube velocity with oscillatory heat release is modeled using a modified form of King’s law. A comparison of the numerical results with experimental data and the calculations reported reveals that the current approach can yield very good predictions. Moreover, subcritical Hopf bifurcations and fold bifurcations are captured with the evolution of dimensionless heat release coefficient, generic damping coefficient and time delay. Linear stability boundary, nonlinear stability boundary, bistable region and limit cycles are thus determined to gain an understanding of the intrinsic nonlinear behaviors

    Malignant B Cells Induce the Conversion of CD4+CD25− T Cells to Regulatory T Cells in B-Cell Non-Hodgkin Lymphoma

    Get PDF
    Recent evidence has demonstrated that regulatory T cells (Treg) were enriched in the tumor sites of patients with B-cell non-Hodgkin lymphoma (NHL). However, the causes of enrichment and suppressive mechanisms need to be further elucidated. Here we demonstrated that CD4+CD25+FoxP3+CD127lo Treg were markedly increased and their phenotypes were different in peripheral blood (PB) as well as bone marrow (BM) from newly diagnosed patients with B-cell NHL compared with those from healthy volunteers (HVs). Involved lymphatic tissues also showed higher frequencies of Treg than benign lymph nodes. Moreover, the frequencies of Treg were significantly higher in involved lymphatic tissues than those from PB as well as BM in the same patients. Suppression mediated by CD4+CD25+ Treg co-cultured with allogeneic CFSE-labeled CD4+CD25− responder cells was also higher in involved lymphatic tissues from B-cell NHL than that mediated by Treg from HVs. In addition, we found that malignant B cells significantly induced FoxP3 expression and regulatory function in CD4+CD25− T cells in vitro. In contrast, normal B cells could not induce the conversion of CD4+CD25− T cells to Treg. We also showed that the PD-1/B7-H1 pathway might play an important role in Treg induction. Taken together, our results suggest that malignant B cells induce the conversion of CD4+CD25− T cells to Treg, which may play a role in the pathogenesis of B-cell NHL and represent a promising therapeutic target
    corecore