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Abstract 

In this paper, of primary concern is a time-delayed thermoacoustic system, viz. a 

horizontal Rijke tube. A continuation approach is employed to capture the nonlinear 

behavior inherent to the system.  Unlike the conventional approach by the Galerkin 

method, a dynamic system is naturally built up by discretizing the acoustic 

momentum and energy equations incorporating appropriate boundary conditions 

using a finite difference method. In addition, the interaction of Rijke tube velocity 

with oscillatory heat release is modeled using a modified form of King’s law. A 

comparison of the numerical results with experimental data and the calculations 

reported reveals that the current approach can yield very good predictions. Moreover, 

subcritical Hopf bifurcations and fold bifurcations are captured with the evolution of 

dimensionless heat release coefficient, generic damping coefficient and time delay. 

Linear stability boundary, nonlinear stability boundary, bistable region and limit 

cycles are thus determined to gain an understanding of the intrinsic nonlinear 

behaviors.  
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1. Introduction 

Thermoacoustic instability widely exists in various combustion systems, such as 

propulsion systems, rocket motors, industrial burners, gas turbine engines etc. [1-3]. It 

arises from the interaction between the heat release and acoustic pressure or velocity 

oscillations within the combustion system. Under proper conditions, the acoustic 

perturbations would be strengthened and large amplitude limit cycles could occur. 

The energy density is usually so high that the resulting limit cycles would cause 

severe damages to the combustors. Hence, the oscillations have to be either avoided 

or controlled to an acceptable level. This requires a through and deep understanding 

of the instability mechanism, including the triggering, damping, flame-acoustic 

coupling etc. There has been a long history on the research of thermoacoustic 

instability. Following the very early observations of Sondhauss [4] and Rijke [5], 

Rayleigh defined the condition to trigger this instability, known as the Rayleigh 

criteria [6].  Thenceforth, this topic had long attracted the attention of researchers, 

especially with the development of rockets, jet engines and other industrial 

combustion systems. The pioneering theoretical work done by Cuclik [7-8] analyzed 

the nonlinear behavior of acoustic waves within a combustion chamber and provided 

a formal framework to study the growth and limiting amplitude of acoustic waves. 

Dowling made tremendous contribution on the understanding of acoustic-combustion 

interaction [9-10], control of thermoacoustic instability [11] and application in 

aeronautic and power generation combustors [12]. Morgans and her co-workers [13-

14] used a network model combined with flame describing function to predict the 

nonlinear thermoacoustic behaviour in combustors. Juniper [15] employed adjoint 

looping of the nonlinear governing equations as well as an optimization routine to 

study the triggering mechanism, including the non-normality, transient growth and 
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bypass transition.  Heckl [16] developed an empirical model for the nonlinear 

behavior of both heat release and the reflection coefficients and this model was 

widely used to predict the limit cycle.  Hoejmakers, Doey and Nijmeijer [17-19] 

utilized binary classification theory and network models to predict the stability of a 

thermoacoustic system. The intrinsic flame stability and flame-acoustic coupling were 

also investigated in real burners. Polifke and co-workers have also done much work 

on the instability study of thermoacoustic systems using Hybrid CFD/ low-order 

modelling [20], state-space models [21], adjoint Helmholtz solver [22], and frequency 

domain system model [23]. Poinsot and colleagues conducted large eddy simulation 

and experiments on the measurement of flame transfer function [24-25], evaluation of 

dynamic flame response [26-27] and acoustic analysis of thermoacoustic instability 

[28-29] in gas turbine combustion chambers. Candel [30-34] also explored the 

interactions between acoustics and swirling flames and came up with a unified 

framework for nonlinear combustion instability analysis. Sujith and his co-workers 

implemented analytical and experimental study and also bifurcation analysis to 

understand the dynamic behaviours involved in thermoacoustic systems, such as non-

normality [35], nonlinearity [36], route to chaos [37], intermittency [38-39] etc. Yang 

has done numerous fundamental, numerical and experimental work on thermoacoustic 

instability encountered in gas turbine [40], liquid rocket engines [41] and liquid-

fuelled propulsion systems [42]. Campa and Camporeale [43-45] used Finite Element 

Method to predict the acoustically driven combustion instabilities and investigated the 

influence of flame and burner transfer matrix on the instability mode and frequencies. 

More work in this field can be found in review papers [46-49].  

Since the instability is generally not desirable, it has to be controlled or avoided. 

There have been many passive or active control methods, such as Helmholtz resonator 
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[50-51], perforated liner [52], jet injection [53], fuel injection [54] and acoustic 

feedback [3]. However, these methods are still not adequate enough to be applied into 

systems like jet engines because of either inefficiency or the lack of suitable actuators 

for operation in such harsh working environments. Thus, an alternative approach is to 

avoid the thermoacoustic oscillations by defining a safe operation region. Within this 

region, the oscillations would either not occur or retain at sufficiently low amplitudes. 

Due to the strong nonlinear characteristics, the system behaviours are generally 

functions of operation parameters. Industrial combustors are often experimentally 

tested under different working conditions to find the safe operation region, which is 

extremely expensive and complicated. Therefore, it would be a good choice to 

computationally estimate the safe operation region, which thus raises the demand to 

come up with accurate numerical methods. Since practical combustors normally 

involve complex geometries, turbulent flow and combustion, it would be a good 

starting point to investigate the numerical method in a simple thermoacoustic system. 

Rijke tube has been a classical tool to study the thermoacoustic instability. It usually 

consists of an open-end tube and heat source inside it. When the heat source is placed 

in certain positions along the tube, sound would emit from the tube. The sound is 

generated due to the transfer from unsteady heat release to acoustic energy. Despite 

the simplicity in structure, it contains rich nonlinear behaviors, such as bifurcation, 

limit cycle, quasiperiodicity and chaos, which make it an excellent example for the 

study of thermoacoustic instability [11, 55-56] .  

In the past decades, Rijke tube has been extensively studied to understand the 

intrinsic nonlinear behavior of the thermoacoustic instability. Hantschk and 

Vortmeyer [57] investigated self-excited thermoacoustic instabilities in the Rijke tube 

using a commercial CFD code. Two different kinds of Rijke tubes were modelled and 
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the results showed good agreement with experiments. Non-linearity in the heat flux 

from the heating source to the flow was found to determine the limit cycle amplitudes. 

Matveev [58-59] combined linear theory and thermal analysis to predict the linear 

stability boundaries in a horizontal Rijke tube. A special form of the nonlinear heat 

transfer function was introduced to extend the method to nonlinear stability analysis. 

Hysteresis phenomenon was reported in the stability boundary and limit cycles were 

predicted as observed in experiments. Ananthkrishnan et al. [60] obtained the 

reduced-order models to capture the global behavior of chamber dynamics via 

truncating the modal expansions and determined the number of modes required for 

accurate results. Heckl and Howe [61] conducted stability analysis of the Rijke tube 

by making use of a Green’s function. Oscillations were described in terms of the 

eigenmodes of an integral equation derived using the Green’s function and the 

predictions of stability behavior were in line with Rayleigh’s criterion. 

Balasubramanian and Sujith [35] studied the role of non-normality and nonlinearity in 

thermoacoustic system in a Rijke tube using the heat release model from Heckl [16]. 

It was shown that the non-normality inherent in the thermoacoutic system could result 

in transient growth of oscillations which can trigger nonlinearities in the system. 

Subramanian et al. [62] conducted bifurcation analysis of the dynamic behaviors of a 

horizontal Rijke tube and obtained bifurcation plots as a function of different system 

parameters. No/linear stability boundaries and other nonlinear phenomena were also 

observed in the analysis of the thermoacoustic system. Noble et al. [63] described a 

data-driven nonlinear and chaos theory–based analysis of thermoacoustic instabilities 

in a simple Rijke tube. It only relied on experimental data with no implicit 

assumptions. PLIFH measurement of OH radical at the rate of 2500 Hz was used to 
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capture the thermoacoustic instability modes appeared in the Rijke tube. Chaotic 

behavior was identified in the thermoacoustic instability.  

In order to study thermoacoustic instability, most models adopt the conservation 

equations for mass, momentum and energy to represent the nature of thermoacoustic 

system. These equations are in the form of partial differential equations (PDEs) and 

need to be discretized and solved using proper numerical methods. Galerkin method 

[64] has been the most commonly employed technique in previous research. 

Nevertheless, in present study, a novel approach named Method of Lines (MOL) [65] 

was employed to convert the governing PDEs into a series of to ordinary differential 

equations (ODEs). It has seldom been used before in this field owing to the 

complexity of discretization and expensive computational cost. As shown in later 

sections, good predictions can be gained in comparison with the conventional method. 

Most importantly, this approach could precisely capture the intrinsic nonlinear 

behaviours compared with measurements as well as other predictions.  

In this paper, a horizontal Rijke tube with heat source is employed for stability 

study. MOL is adopted for to discretize the governing equations. A linear multistep 

method (LMS-method) and Newton iteration method [66-67] are used to calculate the 

characteristic roots of the dynamic system for linear stability study. Numerical 

continuation method is utilized to obtain bifurcation diagrams for investigating 

nonlinear behavior including the Hopf bifurcation, fold bifurcation and limit cycles. 

With a limited increase of computational cost, the approach paves a different way to 

investigate the dynamic behaviours and in/stability of thermoacoustic system. It could 

also be generalized for more complex combustion and thermoacoustic systems. 

Therefore, it, as a useful tool, can guide the design and optimization of practical 

combustion systems. 
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2. Physical Model and Governing Equations 

2.1 Physical Model 

In practice, the Rijke tube is often oriented vertically, in which a base flow is 

driven by natural convection. For the purpose of neglecting this complicated 

convection, in this paper, a primary concern is a horizontal Rijke tube to study the 

instability of thermoacoustic system. 

 

Fig. 1 Schematic of a classical horizontal Rijke tube 

Figure 1 shows a schematic of a horizontal Rijke tube, which is an open-end 

cylinder with L in length and R0 in radium. A base flow driven by an external fan 

passes through the tube and is heated up by a hot wire gauze being placed at the 

position of xf from the inlet. Naturally, the tube displays an infinite number of 

acoustic modes. It was discovered by Rayleigh [68] that the thermal energy could be 

transferred to acoustic energy as long as they are in phase and the acoustic oscillations 

can be further strengthened. However, Matveev [58] argued that these oscillations 

could be damped due to energy dissipation through acoustic boundary layers at the 

wall, acoustic radiation from the open ends and convection of sound by the mean 

flow. Hence, it can be expected that the resulting nonlinearity can make this time-

delayed system display considerable nonlinear behavior. 
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2.2 Governing Equations 

In this study, it is assumed that the fluid is a perfect, inviscid and non-heat-

conducting gas and therefore the influence of the mean flow and mean temperature 

gradients can be ruled out and the acoustic damping primarily results from the 

acoustic boundary layer and acoustic radiation mentioned in Section 2.1. Thus, the 

one-dimensional governing equations for the acoustic momentum and energy are  

0 0
u p

t x


 
 

 
                                                   (1) 

0
0

0

( 1)
cp u

p p Q
t x L

  
 

   
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                                      (2) 

where x and t are streamwise location and time respectively; ρ, u and p are the fluid 

density, velocity and pressure respectively; the subscript 0 represents the unperturbed 

variables and the tilde ~ denotes the perturbed variables; γ, ξ, c0 and L0 are the heat 

capacity ratio, generic acoustic damping coefficient, speed of sound and length of the 

tube respectively; is the rate of heat release perturbation per unit volume. This heat 

release can modeled using a modified form of King’s law [16]  given as 

 
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 

        (3) 

where Lw, dw and Tw represent the length, diameter and temperature of the hot wire 

gauze, respectively; λ and cv are the fluid thermal conductivity and heat capacity at 

constant volume respectively; T0 is the temperature of the unperturbed base flow; S is 

the cross-sectional area of the tube; is the time delay;  is the Dirac Delta 

function to narrow the heat-release region specifically at the wire position xf. The 

generic damping coefficient [69] is defined as 
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where ν is the kinematic viscosity and χ is the thermal diffusivity. 

The nondimensional variables are defined as,  

0

u
u

u
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0
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0 0/

t
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L c
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where p0 = ρ0RuT0 for the ideal gas, Ru is the universal gas constant,  c0 = [γRuT0]
½
 and 

M is the Mach number (= u0/c0). With these definitions, one can substitute and obtain 

the governing equations Eqns. (1) and (2) in nondimensional form as
 

0
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                (7) 

where β is the heat release coefficient defined as  
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1
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1 2 d1
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p Su
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                     (8) 

Clearly, this coefficient as a combination covers all the details of the fluid, the hot-

wire gauze and the tube. 

 In the study, the Rijke tube is open at both ends and therefore the boundary 

conditions at inlet (denoted as x = 0) and outlet (denoted as x = 1) become 

0,1 0x

u

x






                                                   (9) 

0,1 0xp                                                     (10) 

It should be pointed that these boundary conditions enable the problem of interest to 

be a well-posed initial value problem within time domain. 



10 

 

The acoustic energy per unit volume, E, as used by Juniper [15] can be expressed 

as in a nondimensional form  

2 21 1

2 2
E u p                                                    (11) 

3. Numerical Approach 

3.1 Discretization Method 

To study dynamic behavior of the time-delayed system of Rijke tubes, a dynamic 

system constituting several ordinary differential equations (ODEs) should be 

constructed from the partial differential equations Eqns. (6) and (7). In the past, the 

Galerkin method was extensively employed, for which two sets of presumed basis 

functions for u and p were used to convert Eqns. (6) and (7) to ODEs for each 

acoustic mode.  Thus, the selections of basis sets and mode number are expected to 

have significant influence on the results. In this paper, the approach originally 

employed is the Method of Lines (MOL) to build up a dynamic system for the Rijke 

tube. The basic idea of the MOL is to directly discretize the spatial variable x in 

PDEs, but keep the temporal variable t be continuous. It should be pointed out that the 

resulting complexity of discretization and expensive computation cost are still 

affordable considering the availability of high computational resources nowadays. 

Besides, apart from the approximation of ∂u/∂x and ∂p/∂x along axis direction, it 

also involves in Galerkin method to approximate the nonlinear term 
1 1

2 21 1
( )

3 3
fu t    and 

the following term uf (t-τ) [15, 72], which might introduce more errors. However, in 

MOL approach, this term is very easy and straightforward to be implemented in the 

equation and requires no further approximation. Since it is the only nonlinear term in 

the dynamic system, its implementation is of crucial importance for the prediction of 

the inherent nonlinear characteristics. 
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To obtain the unsteady solution structure, the governing equations Eqns. (6) and 

(7) were discretized by a finite difference method. The x domain along the length of 

the tube is divided into N points indexed as xi (i = 1, 2, … , N). Thus there were (N-1) 

parts with an identical interval of x =1/(N-1). Second-order central difference 

scheme was used to discretize the spatial derivatives ∂u/∂x and ∂p/∂x. 

For the internal points xi (i = 2, …, N-1), a series of ODE was obtained  
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(13) 

 Particularly, a second-order upwind difference scheme was employed to deal with 

the Neumann boundary conditions for u at x1 and xN, whereas specific values were 

given for the Dirichlet boundary conditions of p.  

0
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Therefore, u and p at boundaries could be written as 

4 (2, ) (3, )
(1, )

3

u t u t
u t


                                                            (16) 

4 ( 1, ) ( 2, )
( , )

3

u N t u N t
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(1, ) ( , ) 0p t p N t                                                      (18) 

By substituting these four variables into Eqns. (12) and (13), the ODE system 

would be closed and all the variables u and p could be solved. Within this dynamic 

system, there are 2N variables and four bifurcation parameters, i.e. β, ξ, xf , τ. 
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3.2 Bifurcation Analysis Method 

To carry out the bifurcation analysis of the time-delayed thermoacoustic system, a 

numerical continuation method [66-67] was employed. 

 

 Fig. 2 Real parts of the rightmost characteristic roots versus β for the system (ζ=0.043, xf =0.3, τ=0.02) 

First, the system was linearized around the pre-determined steady state 

(equilibrium) solution and the corresponding eigenvalues of the linearized system, 

namely the roots of the characteristic equation were calculated. These roots were first 

approximated by a linear multistep method (LMS-method) and then corrected using a 

Newton iteration method [67]. Mathematically, the rightmost characteristic root, or 

the characteristic root with the maximal real part, conclusively indicates whether or 

not the system is stable. If the rightmost characteristic root crosses zero as a 

bifurcation parameter marches on (as shown in Fig. 2), bifurcation may arise. 

Specifically, if a pair of complex conjugate roots crosses the imaginary axis, a Hopf 

bifurcation point appears as shown in Fig. 3(a). If a real root marches across zero, a 

fold bifurcation point presents as shown in Fig. 3(b).  
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(a)  

 

(b) 

Fig. 3 (a) Characteristic roots at a Hopf point (βH = 0.874) and (b) Characteristic roots at a fold point(βf 

= 0.815) (ζ = 0.043, xf = 0.3, τ = 0.02) 
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Furthermore, a prediction-correction approach [70-71] was employed to capture all 

the branches starting from the bifurcation point. Moreover, the Floquet-multiplier 

scheme was utilized to determine the stability of each branch, for which the solution 

is stable only if the moduli of all the multipliers are less than unity, as demonstrated in 

Fig. 4. 

 
Fig. 4 Floquet Multipliers for an unstable periodic solution  
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In Section 3.1, the governing equations were discretized into a series of ODEs 

using the finite difference method. The resolution of discretization will have influence 
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Fig. 5 Bifurcation diagrams as a function of β using different discretization points                          

(ζ=0.043, xf =0.4, τ=0.02) 

4. Results and Discussion 

In this section, the nonlinear behaviors of the Rijke tube thermoacoustic system are 

analyzed in detail. Different bifurcation diagrams are obtained to explore the effect of 

the system parameters including the heat release coefficient β, the generic damping 

coefficient ζ and the time delay τ.  

4.1 Effect of Heat Release 

The heat release coefficient β is a dimensionless parameter comprising all the 

details of the base flow, the hot wire and the tube. The effect of varying the heat 

release coefficient on the dynamic behavior of the system is presented by the 

bifurcation diagram shown in Fig. 6. Using different measurement for the limit cycles, 

they display the same tendency and the critical points are the same in both figures. 
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Figure 6 presents a subcritical Hopf bifurcation and is similar to the bifurcation 

diagrams reported in [33, 62, 72]. The stability of each periodic solution was 

determined by Floquet multipliers, as discussed in Section 3.2. The steady state 

solution is stable for β < 0.874. At the Hopf bifurcation point βH (βH = 0.874), the 

system loses stability and small amplitude periodic solutions (limit cycle) emerge 

from it. These limit cycles are unstable and will be stabilized through a ‘turning point’ 

or referred to as a fold bifurcation point (βf = 0.815). When β < βf, the steady state 

solution is stable for perturbations of any magnitude. In the region of βf < β< βH, 

linearly stable steady state solution, small-amplitude unstable periodic solutions and 

large-amplitude stable limit cycles coexist to form a bistable region, which is 

susceptible to triggering.  
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(b) 

Fig. 6 Bifurcation diagrams as a function of β (ζ = 0.043, xf = 0.3, τ = 0.02). (a) the peak-to-peak 

amplitude of velocity mode versus β, where dashed line indicates the unstable periodic solution, solid 

line indicates the stable periodic solution; (b) the dimensionless minimum acoustic energy on periodic 

solutions versus β.  
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oscillating flow in the flow. A small perturbation may become a self-sustained large-

amplitude oscillation.  

4.2 Effect of Time Delay 

The bifurcation diagram for a varying time delay is shown in Fig. 7. Similar to Fig. 

6, the bifurcation is also a subcritical Hopf bifurcation. A small time delay below τf is 
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always stable, while a large time delay over τH is always unstable. Between τf  and τH 

is the bistable region. Since a time delay is the time taken for the change of acoustic 

velocity to get reflected in heat release perturbation[72], a decreased time delay would 

lead to a faster heat transfer between the heat source and air flow. Consequently, the 

air would quickly attain the same temperature as the heat source, which eventually 

reduces and eliminates the heat transfer and diminishes the acoustic oscillation. It can 

be concluded that decreased time delay has a stabilizing effect on the system. The 

time delay here was estimated by Lighthill [73]  

0

0.2 wd

u
                                                     (19) 

Thus, under presently employed uniform configuration, a small time delay 

corresponds to a large speed of the mean flow. To obtain a small time delay in Rijke 

tube, the speed of base flow should be enhanced properly. 

  

Fig. 7 Bifurcation diagrams as a function of τ (ζ = 0.043, xf  =0.3, β = 0.874) 
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4.3 Effect of Damping 

 

Fig. 8 Bifurcation diagrams as a function of ζ (β = 0.874, xf = 0.3, τ = 0.02) 

To investigate the influence of damping on the dynamic behavior, the bifurcation 

diagram is displayed in Fig. 8. Since the damping effect could attenuate the oscillation, 

it is expected that the increased damping coefficient would stabilize the system, as 

provided in Fig. 8. For a large damping coefficient over ζf, the system is stable to any 

finite magnitude perturbation. With the decrease of ζ, the system exhibits bistability, 

wherein steady state solutions, small-amplitude unstable periodic solutions and large-

amplitude stable limit cycles coexist. For a smaller damping coefficient over ζH, the 

system is unstable even to infinitesimal perturbations. In the Rijke tube, the damping 

coefficient could be varied by changing the end conditions of the tube. 

4.4 Effect of bi-parameters 

A three dimensional bifurcation diagram was obtained by varying heat release 

coefficient β and time delay τ simultaneously. Fig. 9 shows a good agreement with the  
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bifurcation diagram reported in [62, 74]. When the heat release coefficient β is larger 

than the values of the Hopf points, an infinitesimal perturbation would result in a 

large-amplitude limit cycle, defined globally to be unstable. When β is smaller than 

the values of the fold points, the steady state solution is stable for perturbations of any 

magnitude, appropriately defined to be globally stable. The region between the two 

lines indicates a bistable region for the system. In this region, the system will evolve 

to either steady state or stable limit cycle depending on the initial condition. Therefore, 

the Hopf bifurcation line denotes the linearly stability boundary and the fold 

bifurcation line indicates the nonlinearly stability boundary of the system. 

 

Fig. 9 Three dimensional bifurcation diagram for variation of β and τ (ζ = 0.043, xf = 0.3) 

Figure 10 reveals a three-dimensional bifurcation diagram by varying damping 

coefficient ζ and time delay τ simultaneously, similar to the one obtained in [62]. The 
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non/linear stability boundary as well as the bistable region could be identified 

obviously from Fig. 10. 

 

Fig. 10 Three dimensional bifurcation diagram for variation of ζ and τ (β = 0.874, xf = 0.3) 

Two Hopf branches are continued by varying the heat release coefficient β, generic 

damping coefficient ζ with τ respectively, as shown in Fig. 11. In Fig. 11 (a), with 

fixed damping coefficient, a larger oscillating heat release would destabilize the 

system. Hence, the time delay needs to be smaller to make the system stable. In Fig. 

11 (b), with fixed heat release, smaller damping coefficient will not balance the 

oscillation and smaller time delay contributes to the stability.   

It is worth displaying, a two-dimensional projection of Fig. 9 in β- τ plane as 

shown in Fig. 11(a) as well as the two-dimensional projection of Fig.10 in ζ - τ plane 

in Fig. 11(b). 
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(a) 

   

(b) 

Fig. 11 Hopf branch of time delay τ with (a) β (ζ =0.043, xf = 0.3) and (b) ζ (β = 0.043, xf = 0.3)  
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4.5 Comparison with Experimental Results 

 

Fig. 12 Bifurcation diagram of the minimum acoustic energy as a function of heat release parameter β 

(ζ = 0.06, xf = 0.3, τ = 0.02) obtained by Method of Lines approach and Galerkin method using 1 mode, 

3 modes and 10 mode respectively. Dashed line indicates the unstable periodic solution and solid line 

indicates the stable periodic solution. 

Before comparing with the experimental results, a comparison of bifurcation 

diagram has been made between Galerkin method and MOL approach under 

equivalent condition. From the above figure, it can be seen that both Galerkin and 

MOL method have captured the subcritical Hopf bifurcation and fold bifurcation 

intrinsic in this dynamic system. The bifurcation diagrams are quite similar in terms 

of curve shape and tendency. However, the critical values βH and βf are predicted 

differently via these two methods. For Galerkin method, it is easily found that the 

results intensively depend on the number of modes chosen for the discretization of 

governing equations. With 1, 3 and 10 mode used, the predicted βH equals to 1.161, 

0.806 and 0.859 respectively. Thus, one has to be very careful when choosing the 
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mode number in order to get accurate results. In contrast, the discrepancy is much 

smaller using MOL with different discretization points selected along the axis 

direction, as shown in Fig. 5 in the grid independence check section. Additionally, the 

predicted critical values via MOL approach are larger than these predicted by 

Galerkin method. A larger βH indicates that the system is more difficult to lose 

stability with other bifurcation parameters set constant. Therefore, the system is more 

stable and the unstable area is smaller in the stability boundary diagram.  

The stability boundary and nonlinear behavior inherent in the system have been 

studied experimentally by Matveev [58-59] and Song et al. [75]. In their experiments, 

the heat release coefficient β and time delay τ were varied via changing the power 

supply for the hot wire gauze and mass flow rate simultaneously. Their relations 

could be determined from Eq. (8) and Eq. (19). Figure 13 shows a comparison of the 

stability boundary between the numerical results with the experimental and numerical 

data at different hot wire positions. When xf = 0.25, the predicted stability boundary 

displays good agreement with both the experimental results. When xf = 0.625, the 

stability boundary shows the same trend as the data obtained by Matveev [58].  

It can be learnt from Fig. 11 that the areas encircled by the solid and dotted lines 

indicate the unstable areas and unsafe operation conditions in practice. As illustrated 

in Fig. 13, the unstable region is much smaller as predicted via MOL approach than 

Galerkin method, which indicates a more stable system and is consistent with the 

results as shown in Fig.12. In both cases, the predictions are more accurate than the 

results using Galerkin method and display good agreement with the results by 

experiments, which demonstrates the capability of this method in accurately capturing 

the nonlinear behaviors. 
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   (a) 

 

(b) 

Fig. 13 Comparison between numerical results and experimental results of stability boundary 

(a) ζ = 0.0281, xf = 0.25 (b) ζ = 0.0281, xf = 0.625 

Besides, hysteresis was reported by Matveev [58] at the stability boundary for 

different mass flow rates. Fig. 14 exhibits the comparison of bifurcation behavior 
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versus different time delays. The decrease of time delay would extend the linearly 

stable region and move the bifurcation curve forwards. To compare with the 

experimental data, the amplitude of the acoustic pressure was selected as a measure of 

the limit cycles. The numerical amplitude is close to the experimental data and the 

evolution tendency is similar between the numerical results and experimental data. 

The observed discrepancy regarding the results may be due to the relatively simple 

physical model adopted in current study. The configuration of the Rijke tube also has 

some influence vis-a-vis the experiments. However, the results have shown same 

order with the experimental data and more accurately captured nonlinear dynamics of 

the Rijke tube. The predictions obtained are encouraging and could reveal the rich 

nonlinear behaviors inherent in the Rijke tube thermoacoustic system. In a future 

study, it is hoped that the predictions will be more precise using more sophisticated 

models. 

 

 (a) τ = 0.08 
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(b) τ = 0.07 

Fig. 14 Comparison between numerical results and experimental results of bifurcation behavior 

(ζ=0.0281, xf = 0.25)  

5. Conclusions 

In this study, the dynamic behaviors of a horizontal Rijke tube thermoacoustic 

system are studied in detail. Method of Lines (MOL) technique is employed to 

discretize the governing equations and numerical continuation method is used to 

perform the bifurcation analysis.  

The effects of heat release, damping and time delay are investigated by bifurcation 

diagrams for nonlinear analysis. Subcritical Hopf bifurcation and fold bifurcation are 

captured to reveal the nonlinear behavior of the system. The linear stability boundary, 

nonlinear stability boundary and bistable region are identified and limit cycles are 

predicted. It is demonstrated that the good predictions can be gained in comparison 

with the conventional method and, most importantly, the intrinsic nonlinear 
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behaviours can be precisely captured compared with measurements as well as other 

predictions. Though the current heat release model employed in the paper is 

simplified, this method can be generalized for complex combustion and employed for 

the nonlinear stability of a generic time-delayed thermoacoustic combustion system.  
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