93 research outputs found

    Effects of Dietary Lysine Levels on the Plasma Concentrations of Growth‐Related Hormones in Late‐Stage Finishing Pigs

    Get PDF
    This study was undertaken to investigate the effects of dietary lysine on the plasma concentrations of three growth‐related hormones in pigs. Nine late‐stage finishing barrows were assigned to three dietary treatments according to a completely randomized experimental design (3 pigs/treatment). Three corn and soybean meal‐based diets were formulated to contain three levels of lysine, which were 0.43, 0.71, and 0.98% for Diets 1 (lysine deficient), 2 (lysine adequate), and 3 (lysine excess), respectively. The feeding trial lasted 4 weeks, during which the pigs were allowed ad libitum access to the diets and water. After the 4 weeks, blood was collected and plasma samples were obtained. Then, the plasma concentrations of insulin, growth hormone (GH), and insulin‐like growth factor 1 (IGF‐1) were measured. No difference in the plasma concentration of insulin or GH among the three treatments was found (P > 0.10). However, the plasma IGF‐1 concentration was lower (P < 0.05) in the pigs fed Diet 1 or 3 than fed Diet 2, suggesting that either dietary lysine deficiency or excess can lead to a lower concentration of plasma IGF‐1. It was concluded that IGF‐1, instead of insulin or GH, in the blood may be a key controlling growth factor in response to dietary lysine supply for regulating muscle growth in late‐stage finishing pigs

    Topology-Aware Latent Diffusion for 3D Shape Generation

    Full text link
    We introduce a new generative model that combines latent diffusion with persistent homology to create 3D shapes with high diversity, with a special emphasis on their topological characteristics. Our method involves representing 3D shapes as implicit fields, then employing persistent homology to extract topological features, including Betti numbers and persistence diagrams. The shape generation process consists of two steps. Initially, we employ a transformer-based autoencoding module to embed the implicit representation of each 3D shape into a set of latent vectors. Subsequently, we navigate through the learned latent space via a diffusion model. By strategically incorporating topological features into the diffusion process, our generative module is able to produce a richer variety of 3D shapes with different topological structures. Furthermore, our framework is flexible, supporting generation tasks constrained by a variety of inputs, including sparse and partial point clouds, as well as sketches. By modifying the persistence diagrams, we can alter the topology of the shapes generated from these input modalities.Comment: 16 pages, 9 figure

    Effects of dietary lysine levels on plasma free amino acid profile in late-stage finishing pigs

    Get PDF
    Muscle growth requires a constant supply of amino acids (AAs) from the blood. Therefore, plasma AA profile is a critical factor for maximizing the growth performance of animals, including pigs. This research was conducted to study how dietary lysine intake affects plasma AA profile in pigs at the late production stage. Eighteen crossbred (Large White × Landrace) finishing pigs (nine barrows and nine gilts; initial BW 92.3 ± 6.9 kg) were individually penned in an environment controlled barn. Pigs were assigned randomly to one of the three dietary treatments according to a randomized complete block design with sex as block and pig as experiment unit (6 pigs/treatment). Three corn- and soybean meal-based diets contained 0.43 % (lysine-deficient, Diet I), 0.71 % (lysine-adequate, Diet II), and 0.98 % (lysine-excess, Diet III) l-lysine, respectively. After a 4-week period of feeding, jugular vein blood samples were collected from the pigs and plasma was obtained for AA analysis using established HPLC methods. The change of plasma lysine concentration followed the same pattern as that of dietary lysine supply. The plasma concentrations of threonine, histidine, phenylalanine, isoleucine, valine, arginine, and citrulline of pigs fed Diet II or III were lower (P < 0.05) than that of pigs fed Diet I. The plasma concentrations of alanine, glutamate, and glycine of pigs fed Diet II or III were higher (P < 0.05) than that of pigs fed Diet I. The change of plasma leucine and asparagine concentrations followed the patterns similar to that of plasma lysine. Among those affected AAs, arginine was decreased (P < 0.05) in the greatest proportion with the lysine-excess diet. We suggest that the skeletal muscle growth of finishing pigs may be further increased with a lysine-excess diet if the plasma concentration of arginine can be increased through dietary supplementation or other practical nutritional management strategies

    A novel IgE epitope-specific antibodies-based sandwich ELISA for sensitive measurement of immunoreactivity changes of peanut allergen Ara h 2 in processed foods

    Get PDF
    BackgroundPeanut is an important source of dietary protein for human beings, but it is also recognized as one of the eight major food allergens. Binding of IgE antibodies to specific epitopes in peanut allergens plays important roles in initiating peanut-allergic reactions, and Ara h 2 is widely considered as the most potent peanut allergen and the best predictor of peanut allergy. Therefore, Ara h 2 IgE epitopes can serve as useful biomarkers for prediction of IgE-binding variations of Ara h 2 and peanut in foods. This study aimed to develop and validate an IgE epitope-specific antibodies (IgE-EsAbs)-based sandwich ELISA (sELISA) for detection of Ara h 2 and measurement of Ara h 2 IgE-immunoreactivity changes in foods.MethodsDEAE-Sepharose Fast Flow anion-exchange chromatography combining with SDS-PAGE gel extraction were applied to purify Ara h 2 from raw peanut. Hybridoma and epitope vaccine techniques were employed to generate a monoclonal antibody against a major IgE epitope of Ara h 2 and a polyclonal antibody against 12 IgE epitopes of Ara h 2, respectively. ELISA was carried out to evaluate the target binding and specificity of the generated IgE-EsAbs. Subsequently, IgE-EsAbs-based sELISA was developed to detect Ara h 2 and its allergenic residues in food samples. The IgE-binding capacity of Ara h 2 and peanut in foods was determined by competitive ELISA. The dose-effect relationship between the Ara h 2 IgE epitope content and Ara h 2 (or peanut) IgE-binding ability was further established to validate the reliability of the developed sELISA in measuring IgE-binding variations of Ara h 2 and peanut in foods.ResultsThe obtained Ara h 2 had a purity of 94.44%. Antibody characterization revealed that the IgE-EsAbs recognized the target IgE epitope(s) of Ara h 2 and exhibited high specificity. Accordingly, an IgE-EsAbs-based sELISA using these antibodies was able to detect Ara h 2 and its allergenic residues in food samples, with high sensitivity (a limit of detection of 0.98 ng/mL), accuracy (a mean bias of 0.88%), precision (relative standard deviation &lt; 16.50%), specificity, and recovery (an average recovery of 98.28%). Moreover, the developed sELISA could predict IgE-binding variations of Ara h 2 and peanut in foods, as verified by using sera IgE derived from peanut-allergic individuals.ConclusionThis novel immunoassay could be a user-friendly method to monitor low level of Ara h 2 and to preliminary predict in vitro potential allergenicity of Ara h 2 and peanut in processed foods

    RNA sequencing analysis revealed differentially expressed genes and their functional annotation in porcine longissimus dorsi muscle affected by dietary lysine restriction

    Get PDF
    The objective of this study was to investigate the effects of dietary lysine restriction on the global gene expression profile of skeletal muscle in growing pigs. Twelve crossbred (Yorkshire × Landrace) barrows (initial BW 22.6 ± 2.04 kg) were randomly assigned to two dietary treatments (LDD: a lysine-deficient diet; LAD: a lysine-adequate diet) according to a completely randomized experiment design (n = 6). After feeding for 8 weeks, skeletal muscle was sampled from the longissimus dorsi of individual pigs. The muscle total RNA was isolated and cDNA libraries were prepared for RNA sequencing (RNA-Seq) analysis. The RNA-Seq data obtained was then analyzed using the CLC Genomics Workbench to identify differentially expressed genes (DEGs). A total of 80 genes (padj ≤ 0.05) were differentially expressed in the longissimus dorsi muscle of the pigs fed LDD vs. LAD, of which 46 genes were downregulated and 34 genes were upregulated. Gene Ontology (GO) analysis of the DEGs (padj ≤ 0.05) for functional annotation identified those GO terms that are mostly associated with the molecular functions of structural molecules and metabolic enzymes (e.g., oxidoreductase and endopeptidase), biological process of acute-phase response, and amino acid metabolism including synthesis and degradation in the extracellular matrix region. Collectively, the results of this study have provided some novel insight regarding the molecular mechanisms of muscle growth that are associated with dietary lysine supply

    Volumetric-modulated arc therapy as an alternative to intensity-modulated radiotherapy for primary tumors of advanced non–small-cell lung cancer: A multicenter retrospective analysis based on propensity score matching

    Get PDF
    Purpose: To investigate the effect of volumetric-modulated arc therapy (VMAT) versus intensity-modulated radiotherapy (IMRT) for advanced non–small-cell lung cancer (NSCLC). Methods: Cases in which the primary tumors were treated with IMRT or VMAT as initial intervention in stages III and IV NSCLC patients from September 2008 to March 2020 were retrospectively analyzed. Propensity Score Matching (PSM) was used to assess the efficacy and toxicity of the two radiotherapy techniques. Results: A total of 637 patients were included, out of which 483 cases were treated with IMRT, while 154 received VMAT. A total of 308 patients were selected after PSM. Patients who were having acute radiation esophagitis and pneumonia treated with VMAT had a lower percentage than those treated with IMRT (p &lt; 0.05) before PSM. However, there was no significant difference in grades 3 - 4 toxicity (χ2 = 2.77, p = 0.096). There were also no significant differences in the primary endpoints between the two groups after PSM (p &gt; 0.05), while for secondary endpoints, all lung V5, and V20, mean lung dose and heart V30, heart V40, mean heart dose in all patients and stage N2 patients in VMAT after PSM were significantly lower than those of IMRT (p &lt; 0.05). Conclusion: Radiation therapy of A-NSCLC primary tumors using VMAT and IMRT seem to produce similar efficacy. The volume parameters of normal tissues and organs is significantly lower in VMAT, especially in patients with stage N2. Therefore, VMAT may be more beneficial for reducing radiation damage in normal tissues and organs

    Automated tooth crown design with optimized shape and biomechanics properties

    Get PDF
    Despite the large demand for dental restoration each year, the design of crown restorations is mainly performed via manual software operation, which is tedious and subjective. Moreover, the current design process lacks biomechanics optimization, leading to localized stress concentration and reduced working life. To tackle these challenges, we develop a fully automated algorithm for crown restoration based on deformable model fitting and biomechanical optimization. From a library of dental oral scans, a conditional shape model (CSM) is constructed to represent the inter-teeth shape correlation. By matching the CSM to the patient’s oral scan, the optimal crown shape is estimated to coincide with the surrounding teeth. Next, the crown is seamlessly integrated into the finish line of preparation via a surface warping step. Finally, porous internal supporting structures of the crown are generated to avoid excessive localized stresses. This algorithm is validated on clinical oral scan data and achieved less than 2 mm mean surface distance as compared to the manual designs of experienced human operators. The mechanical simulation was conducted to prove that the internal supporting structures lead to uniform stress distribution all over the model

    Effect of Zn and Cu Addition on Microstructure and Mechanical Properties of Al-10wt%Mg Alloy

    No full text
    5xxx series aluminum alloys have been widely used in automobiles, ships, aerospace and other fields for their low density, good corrosion resistance and weldability. The present study designs a new Al-10.0Mg-1.0Zn-0.15Cu (wt%) alloy with different composition from the traditional 5xxx series and 7xxx series aluminum alloys; the Zn/Mg ratio is below 1.0. Detailed characterization by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) has been carried out to reveal the microstructural evolution. The results show that the addition of Zn and Cu inhibits the precipitation of the Al3Mg2 phase in the traditional Al-Mg binary alloy during annealing and promotes the precipitation of T-Mg32(Al,Zn)49 phase, which contributes to precipitation strengthening. After 75% rolling and 150 °C annealing, the T-Mg32(Al,Zn)49 phase precipitates and the alloy obtains good strength and plasticity coordination with 0.2% offset yield strength of 519 MPa and ultimate tensile strength of 653 MPa, accompanied by uniform elongation of 8.1%. The mechanisms underlying the improved strength and plasticity in the Al-10.0Mg-1.0Zn-0.15Cu (wt%) alloy are discussed

    Study on the Calculation Method of Water Inflow Velocity of Loose Rock Landslide

    No full text
    Landslide surges pose a serious threat to the ecological environment and human life safety. Based on rock structure mechanics and water sediment dynamics, considering the additional resistance caused by the interference of loose landslide particles on flow structure, this paper deduces the resistance calculation formula of loose-rock landslide particles when entering water. It modifies the landslide velocity formula (ASCE) recommended by the American Society of Civil Engineers. The acceleration calculation formula and velocity calculation formula of bulk-rock landslides entering water are obtained, and the determination method of the main parameters in the formula is given. Based on the data of the Xintan Landslide into the Yangtze River, the rationality of the calculation results of this formula and the ASCE formula are compared and analyzed. It shows that the ASCE formula calculates the average velocity of landslide movement on land, and there will be a noticeable deviation from the actual situation when it is used to calculate the water entry velocity of a loose-rock landslide. The formula given in this paper is more practical and can be used to calculate the velocity of loose-rock landslides entering water
    corecore