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Despite the large demand for dental restoration each year, the design of crown
restorations is mainly performed via manual software operation, which is tedious
and subjective. Moreover, the current design process lacks biomechanics
optimization, leading to localized stress concentration and reduced working
life. To tackle these challenges, we develop a fully automated algorithm for
crown restoration based on deformable model fitting and biomechanical
optimization. From a library of dental oral scans, a conditional shape model
(CSM) is constructed to represent the inter-teeth shape correlation. By
matching the CSM to the patient’s oral scan, the optimal crown shape is
estimated to coincide with the surrounding teeth. Next, the crown is
seamlessly integrated into the finish line of preparation via a surface warping
step. Finally, porous internal supporting structures of the crown are generated to
avoid excessive localized stresses. This algorithm is validated on clinical oral scan
data and achieved less than 2 mm mean surface distance as compared to the
manual designs of experienced human operators. The mechanical simulation was
conducted to prove that the internal supporting structures lead to uniform stress
distribution all over the model.

KEYWORDS

full-crown restorations, statistical shape model, conditional shape model, supporting
structure optimization, biomechanical simulation

1 Introduction

Oral problems, including dental caries or even tooth loss, are affecting about 2.5 billion
people worldwide (Peres et al., 2019; World Health Organisation, 2022). With the
development of information technology, traditional manual dental crown design is
gradually replaced by efficient digital design, which includes Computer-Aided Design
(CAD) and Computer-Aided Manufacturing (CAM) technology (Miyazaki et al., 2009;
Susic et al., 2017). In the recent decade, the continuous integration of big data and the surge
of artificial intelligence has further revolutionized digital dental care, paving the way for the
fully automated dental restoration design.
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In the 1980s, Duret et al. (1988) first applied CAD/CAM
technology to the field of dental restoration and successfully
produced the first all-ceramic crown. The application of CAD/
CAM simplifies the restoration design process into three parts:
digital data collection, digital design of restorations, and digital
processing. The creation of a database of standard teeth provides an
effective method for the digital design of full-crown restorations
(Cheng et al., 2009). The designer of the crown restoration adjusts
the standard crown deformation to fit the patient’s dental
morphology and occlusal relationship. To further improve the
efficiency and accuracy of crown design, several studies related to
the digital design of crown restorations have been proposed. MEHL
et al. extracted surface features from 3D scan datasets, and they
developed a mathematical representation model of the mandibular
first molar using principal component analysis and reconstructed
the surface by sparse points to test the dental inlay design task (Blanz
et al., 2004; Mehl et al., 2005). Zhang (2016) used a similar strategy to
develop a parametric model of the mandibular first molar and
implemented the defective crown surface reconstruction task
using spatially constrained feature points in the contralateral and
adjacent regions of the jaw. Some researchers used a standard crown
surface model to obtain an inlay model by iterative Laplace
deformation with significant feature point constraints
(Steinbrecher and Gerth, 2008; Jiang et al., 2016; Zhang et al.,
2017) or by creating a one-to-one mapping of the standard
crown model to the feature points of the retained teeth (Zheng
et al., 2011) to approximate the residual region. For the automatic
design task of full-crown restorations, both statistical shape model
(Pascoletti et al., 2021) restorations and standard crown model
deformations are included. Song et al. (Song et al., 2007) made
local adjustments to standard crowns based on global and occlusal
characteristic curves, but their method is only applicable to molars.

With the rapid development of deep learning theory, neural
networks started to be used in dental crown restoration design.
Hwang et al. (2018); Yuan et al. (2020) applied Deep Neural
Networks (DNN) based on the Pix2pix (Isola et al., 2017) model
to generate occlusal surfaces. Their methods are efficient but are
limited to the occlusal surfaces. Tian et al. (2022) proposed a new
two-stage prosthetic restoration framework to automatically
reconstruct functional occlusal surfaces with realistic details.
Lessard et al. (2022) improved PF-Net (Huang et al., 2020) by
using a point cloud-completing method to accomplish the tooth
completion task. However, this study did not consider the
morphology of the inner surface of the prepared tooth to obtain
a complete crown.

In summary, the existing algorithms have significantly automated
the design of crown restorations. However, it is still challenging to
preserve anatomical morphological features such as developmental
grooves and crests. Some of the studies only focus on occlusal
surface reconstruction without close matching of the restoration
with the adjacent teeth and the preparation, leaving the design
process incomplete for clinical applications. Moreover, most existing
studies lack biomechanical property optimization, potentially leading to
localized stress concentration which reduces the working life.

To solve the above problems, an automatic full-crown
restoration algorithm is proposed in this paper. The main
contributions of this paper are as follows:

(1) A parametric statistical shape model (SSM) of the tooth was
constructed based on a clinical dental scan data library which
preserved the natural morphological characteristics of the
occlusal surface. This model was deformed and matched to
the patient’s oral scan to achieve an automatic crown design.

(2) Different from the existing studies which only use tooth SSMs, a
conditional shape model (CSM) was constructed in this work to
model the occlusal and adjacency relationships between
neighboring teeth, ensuring proper inter-tooth shape
dependencies of the designed crown.

(3) In addition to the crown body design, an automatic process was
developed to closely fit the deformable crown to the preparation
finish line, resulting in a crown model ready for
subsequent CAM.

(4) The internal support structure was optimized to prolong the
working life and save the additive manufacturing material. The
biomechanical simulation was performed to verify that the
optimized support structure led to uniform stress distribution
in all parts of the crown.

2 Materials and methods

2.1 Technical process

This work addresses the problem of missing tooth crown design
using the existing adjacent teeth as shape references, which are
shown in Figure 1.

Figure 2 shows the technical process of the proposed algorithm,
which mainly consists of the following steps:

(1) Conditional shape model (CSM) construction. Based on a
library of clinical oral scan data, the deformable statistical
shape models (SSMs) of different teeth were constructed.
After that, the inter-teeth shape correlation between adjacent
SSMs was modeled using the CSM approach.

(2) Shape model matching with patient oral scan. First, the SSM of
the neighboring existing teeth is matched to the oral scan. Then
the missing crown model was created using the CSM, and the
possible intersections between the crown and its neighboring
teeth are automatically removed to ensure reasonable physical
contact.

(3) Crown fitting to the preparation. The preparation finish line is
automatically identified and the bottom of the crown is
deformed to closely fit to the finish line.

(4) Internal supporting structure optimization. The porosity and
direction of the internal supporting structure were optimized to
ensure uniform stress distribution over the entire crown for the
sake of prolonged working life and efficient material
consumption.

2.2 Statistical shape model construction

SSM (Cootes et al., 1995) parametrically represents the average
shape of a class of 3D models and their shape variations, as defined
by the following equation,
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X � �X +∑
p

i�1
aiΦi, (1)

where, X is the statistical shape model, �X is the average model, Φi

represents the different deformation modes obtained from the
principal component analysis (PCA), p is the number of the
deformation modes, and ai represents the shape coefficients of
the different deformation modes.

To construct the SSM of dental crown, a standard template was
aligned to all other clinic oral scan models using the Thin Plate
Spline Robust Point Matching (TPS-RPM) (Chui and Rangarajan,
2003) method, to establish the surface vertices correspondence of

different templates. In addition, to restrict the vertex distribution, we
selected prominent feature landmarks on the occlusal surface of the
crown, such as on the grooves, pits, and cusps, based on the
anatomical characteristics of different dental positions. These
landmarks were used to guide the deformation of the standard
template. Figure 3 shows the landmarks selected for different dental
positions, where Figures 3A–F are respectively the right maxillary
second molar, right maxillary first molar, right maxillary second
premolar, right mandibular second molar, right mandibular first
molar, and right mandibular second premolar.

From this, we can obtain a set of ideal data, each mesh has the
same number of vertices, and the corresponding vertices in different

FIGURE 1
The clinical dental scan data. (A) the oral scan model with missing tooth; (B) the cropped local adjacent teeth and preparation model.

FIGURE 2
Technical process.
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meshes are located in the same anatomical position. N vertices of
each mesh can form a vector x,

x � x1, y1, z1, ...,xn, yn, zn[ ]T, (2)
Where (xj, yj, zj) is the coordinate of the j-th vertex in the mesh.

To cancel the inter-subject variations in translation,
rotation, and scaling, we used Generalized Procrustes analysis
(GPA) (Bookstein, 1996) for the sample vectors. Next, we
statistically model the aligned shape vectors by principal
component analysis (PCA). For the shape vectors represented
by Eq. (2), the average model can be obtained by simply
averaging the samples as Eq. (3).

�X � 1
k
∑
k

m�1
xm, (3)

where k is the number of mesh used to set up the SSM.
The singular value decomposition (SVD) of Eq. (4) can be

easily calculated to obtain the eigenvectors Φi and the
corresponding eigenvalues λi, namely, the different modes of
deformation and their corresponding variances, with the largest
eigenvalue corresponding to the most significant mode of
variation.

L � x1 − �X( )... xk − �X( )( ), (4)
where k is the number of mesh used to set up the SSM.

The parameter ai in Eq. (1) is used to control the shape
deformation, which is usually controlled within the range of
[−3 ��

λi
√

, 3
��
λi

√ ] to ensure that the deformation is reasonable.

2.3 Conditional shape model construction

According to the proposed method, the SSMs are constructed
for the missing tooth (described as “sonmodel” in the following) and
its adjacent teeth as a whole (described as “father model” in the
following). Since the teeth perform important masticatory functions,
the size and position of the missing crown mainly depend on its
adjacent teeth. In other words, there is a high correlation between
the shape coefficients of the two. We parametrically describe this
relationship by building the conditional shape model (CSM)
(Iglesias and de Bruijne, 2007).

The coefficients of the SSM of the sonmodel S depend heavily on
the father model F. The distribution of S can be modeled as a
conditional Gaussian distribution P(S |F) under the condition that
F is known,

P S F|( ) � N μ,Σ( ), (5)
Representations of μ and Σ can be derived according to (Iglesias

and de Bruijne, 2007):

μ � μS + ΣSFΣ−1
F F − μF( ), (6)

Σ � ΣS − ΣSFΣ−1
F ΣFS, (7)

where, μ is the conditional mean, Σ is the conditional covariance, μS
and μF are the average shape coefficients of S and F respectively, ΣS

and ΣF are the variances of S and F respectively, and ΣSF and ΣFS are
the covariance matrices of both.

When a set of SSM distribution coefficients of the father model F
is given, the SSM distribution coefficients of the son model S can be

FIGURE 3
Landmarks of different dental positions indicating the location of prominent features such as on the grooves, pits and cusps. (A) maxillary second
molar; (B)maxillary first molar; (C)maxillary second premolar; (D)mandibular second molar; (E)mandibular first molar; (F)mandibular second premolar.
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obtained according to the above probability model, namely, the son
model matching the shape of the father model is obtained.

2.4 SSM matching

After constructing the deformable models, in practical
application, to obtain the set of shape coefficients of the father
model, it is necessary to match the SSM of the father model to the
patient’s oral scan model.

According to Eq. (1), the SSM of the father model can be
expressed as follows,

F � �F +∑
p

i�1
aFi ΦF

i , (8)

The average model vertices of the father model can form a vector
�F � [xF1 , yF

1 , z
F
1 , ...,x

F
n , y

F
n , z

F
n ]T, where (xF

j , y
F
j , z

F
j ) is the coordinate

of the j-th vertex in the mesh.
To improve the computational efficiency, the Iterative Closest

Point (ICP) algorithm (Besl and McKay, 1992) was used to initially
align the father model with the patient’s oral scan model. The
nearest points of �F in the patient oral scan model were searched
during each iteration and constituted the vector P �
[xP

1 , y
P
1 , z

P
1 , ...,x

P
n , y

P
n , z

P
n ]T.

The shape coefficients of the father model aF � [aF1 , aF2 , ...,aFk ]T
are computed by solving the linear system to minimize the least
squares error,

min P − �F −∑
p

i�1
aFi ΦF

i

									
									
2

2

, (9)

According to Eq. (6), the shape coefficient of the son model can
be expressed as follows,

aS � μS + ΣSFΣ−1
F aF − μF( ), (10)

Then the results of the father model aligned to the patient’s oral
scan model can be obtained as follows,

F′ � �F +∑
p

i�1
aFi ΦF

i , (11)

The son model matching with the shape of the father model,

S′ � �S +∑
p

i�1
aSiΦS

i , (12)

To further improve the alignment accuracy, the TPS-RPM
alignment algorithm was used to align F′ with the patient’s oral
scan model again. Since the ICP alignment had matched the two
coarsely, TPS-RPM converged at a fast rate to obtain the
transformation matrix, which was applied to S′.

Finally, the intersection-removing algorithm was used to ensure
that there was no unreasonable intersection between the crown and
its adjacent teeth. Specifically, the vertices of the crown were looped
through, and those located inside the adjacent teeth were moved
outward along the direction of the normal vector until all vertices
did not need to be adjusted. Finally, the face intersection was
detected to ensure reasonable contact between the crown and its
adjacent teeth.

2.5 Preparation fitting

The above steps ensure a clear occlusal surface with anatomical
features and a harmonious external surface with the morphology of
its adjacent teeth (Figure 4A). However, for practical clinical usage,
the bottom of the crown must be closely fitted to the preparation.

As shown in Figure 4B, we computed the local curvature for the
surface vertices on the preparation model. The vertices with
maximum local curvature on the upper part of the model were
selected as the candidate points of the finish line (Figure 4C). Next, a
polynomial surface is fitted to the candidate points and the crown is
cut by this surface to remove the extra parts below the finish line
(Figure 4D).

To fit the bottom of the crown to the finish line of preparation,
the sign distance function (SDF) was used to control the crown
deformation. The SDF is defined as the distance from a point in
space to the surface with a positive interior and negative exterior,
and the surface is expressed as the 0-equivalent surface of the SDF.
First, the mesh of the crown and the preparation were converted into
3D voxels separately and combined into one whole. The SDF values
at the vertices of the voxels were calculated, as shown in Figure 4F. In
order to create a smooth transition surface from the bottom of the
crown to the preparation, the calculated SDF array was diffusion
filtered. The cross-sectional view of the crown and the preparation is
shown in Figure 4E. To ensure that the shape of the occlusal surface
and the preparation below the finish line were maintained, the SDF
values in the fixed zone were fixed during the diffusion, while the
SDF values in the deformation zone were gradually smoothly and
contracted to the finish line. The SDF values after diffusion were
shown in Figure 4G. Finally, the 0-equivalent surface of the SDF was
converted into a triangular mesh using the marching cube
algorithm, resulting in a closed crown that matched the shape of
the preparation, as shown in Figure 4H.

2.6 Internal supporting structure
optimization

Nowadays, additive manufacturing (AM) is increasingly used in
the CAMof the dental crown. Compared to the traditional computer
numerical control (CNC) technique, AM is more flexible for
producing complex structures thus facilitating the manufacturing
of complicated support structures inside the object. In this work,
skeletonized internal supporting structures of the crown are
designed to improve the biomechanical properties and to save
the materials for additive manufacturing.

The supporting structure is designed using the triply periodic
minimal surfaces (TPMS) method that we previously proposed for
generating porous structures (Wang et al., 2022). To effectively
represent the porous structures, the period function and the wall-
thickness function, which control parameters continuously, were
created to control the number of holes (topology change) and the
thickness of the structure wall (geometry change), respectively.
These two continuous functions, which directly compute integrals
and gradients, converted the mechanical problem with given
boundary conditions into a computable mathematical model.
Moreover, the proposed optimization can be implemented
directly on the function representation, only one time of voxel
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partition is needed to generate the finite elements for integral
calculations, instead of multiple times of remeshing of the
iteratively updated model. The main optimization process
consisted of two steps, where the period function was optimized
as a coarse adjustment and the wall-thickness function was used for
fine optimization. This two-step optimization can also be accelerated
using a global-local radial basis interpolation strategy, which
efficiently minimized the compliance of the structures. Finally, a
porous structure was obtained with uniform stress distribution.

Specifically, firstly, the initial TPMS-based structure is
obtained according to the input crown model and the loading
conditions. The initial porosity is 60%, and the wall thickness is
set within [0.2, 1.0] mm. Note that the parameters can be
adjusted according to the applications. Secondly, a function
representation-based optimization formulation is defined to
minimize the compliance of the porous shell structure. The
bottom of the crown is rigidly fixed to prevent any lateral
movement, while disregarding the frictional forces.

FIGURE 4
Preparation fitting process. (A) the crown before the fitting; (B) surface curvature of the preparation; (C) points on the finish line (in light blue color);
(D) fitting the cross surface of the finish line; (E) the cross-sectional view of (A); (F) the SDF before fitting; (G) the SDF after fitting; (H) the fitting result.

FIGURE 5
Average shape models of (A) maxillary second molar; (B) maxillary first molar; (C) maxillary second premolar; (D) mandibular second molar; (E)
mandibular first molar; (F) mandibular second premolar.
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Additionally, we impose the constraint of vertical pressure
exclusively on the occlusal surface of the crown. Thirdly, the
aforementioned two-step optimization strategy is exploited to
optimize the topology and the geometry, respectively. Finally, we
obtain the optimized porous structure of the crown with
continuous geometry changes and smooth topology changes
that have reasonable stress distribution. In the final
processing, an outer shell is added to wrap the porous
structures. The default thickness of the shell is set to
0.6–1 mm according to the precision of 3D printers.

3 Results and discussion

To verify the proposed method, we choose the first molars as the
missing teeth for crown design, since the first molars have the
highest damage rate according to the statistical surveys (Zheng et al.,
2011; Jiang et al., 2016; Zhang et al., 2017). Twenty representative
samples of different shape patterns were used to construct the SSMs
and CSM. In the subsequent sections, we will demonstrate the results
for crown SSM and CSM construction through free deformation
experiments, and conduct tests on clinical data to quantify the

FIGURE 6
Deformation results of the first three shape variation modes, varying in the range of αi ∈ [−3 ��

λi
√

, 3
��
λi

√ ], where i represents themode index. Each row
shows the deformation effect of one mode, and the middle column shows the average model.

FIGURE 7
Shape deformation of the target crown (green) following the shape changes in its adjacent teeth (yellow). Each row shows the active deformation
effect of the father model in one mode and the corresponding son model generated using the CSM.
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design accuracy. The internal supporting structure was optimized to
result in uniform stress distribution, which was proved through
biomechanical simulation.

3.1 SSM construction results

Previous to the automatic crown design, the SSMs of the target
crown (for the first molars) and its adjacent teeth are constructed.
Figure 5 shows the average shape models of the SSMs, where (A-F)
are respectively the maxillary second molar, maxillary first molar,
maxillary second premolar, mandibular second molar, mandibular
first molar, and mandibular second premolar. Figure 5 only shows

the models of the right side teeth, whereas the left side teeth models
are similar.

It can be seen from Figure 5 that the average shape models
maintained the anatomical details of the occlusal surface.
Specifically, the maxillary second premolar buccal cusp is similar
in height to the lingual cusp, while the mandibular second premolar
appears round. The maxillary first molar and the second molar are
rhomboidal and generally have four cusps, of which the mesialingual
cusp has the largest area as the main functional cusp, but the latter
presents a more pronounced rhomboidal shape and a slightly
narrower crown. The mandibular first molars typically have five
cusps, while the mandibular second molars are cross-shaped. All
these detailed features are presented in our shape model.

FIGURE 8
Results of dental crown design. (A) the crown design overlaid on top of the preparation; (B) the internal surface of the crown.

FIGURE 9
The results of the automatic crown design, each row shows one of the test data. (A) test data; (B) SSMmatching results; (C) crown design results; (D)
surface CD map shown in pseudo color.
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To observe the shape variation modeling ability of the SSM,
different shape coefficients were adjusted to produce deformed
shape instances. Figure 6 shows the deformation effects of the first
three shape modes. Mode 1 demonstrates the adjustment of width and
height aspect ratios. Mode 2 shows the height variation of the lingual
and buccal sides of the crown bottom, which is to adapt to the gingival
curvature of different patients. Mode 3 controls the relative height
changes of the mesial and distal crown and the crest of the tooth.

3.2 CSM construction results

To construct the CSM, we take the mandibular first molar SSM
as the sonmodel, and its five neighboring teeth as a whole SSM as the
father model. Then the dependence between the shape coefficients of
the two SSMs was constructed as a CSM.

To verify the constructed CSM, we actively changed the shape
coefficients of the father model and generated the corresponding son
model using CSM. Figure 7 shows the son model shape adaptation
following the father model change under the first two modes. Mode
1 mainly focuses on the adjustment of the occlusal position of the
father model, and mode 2 mainly shows the change in the tooth
height. It can be seen that the son model follows well with the
deforming father model in both position and size variations.

Similarly, the CSM of the maxillary first molar was established.

3.3 Automatic crown design results

The proposed crown design method was used to test 20 oral scan
data randomly selected from our database of maxillary first molar

and mandibular first molar, respectively. All the test data were not
included in the model training dataset. The first molar and its five
adjacent teeth are manually cropped from the organ scan for
algorithm validation.

Figure 8A shows the crown design of one representative test
data, with an inner surface that matches the shape of the preparation
as shown in Figure 8B.

To quantify the accuracy of crown design, we used the manually
designed crown by experienced designers as the reference standard.
The Chamfer Distance (CD) between our result model and the
expert designed to quantitatively assess the accuracy of the SSM
matching,

CD P1, P2( ) � 1
P1| | ∑x∈P1

min
y∈P2

x‖ −y				2 + 1
P2| | ∑y∈P2

min
x∈P1

y
				 −x‖2 (13)

where, P1 is the point set consisting of the vertices of the crown
design, P2 is the point set consisting of the vertices of the manually
designed crown, x and y are the coordinates of the vertices in P1 and
P2 respectively.

A randomly selected part of the test results is shown in Figure 9.
Each column from left to right shows the test data, the deformation
results after matching the father model to the test data, the automatic
design results of the crown, and the visualization of crown design
quality based on CD. For visual assessment, the crown designed by
our method has consistent size with the adjacent teeth and
complements the surrounding dentition without noticeable gaps
or overlaps.

The quantitative test results are shown in Table 1. The American
Board of Orthodontics (ABO) accepts crown designs with errors
within 0.5 mm (Casko et al., 1998) as a criterion for quality
evaluation. In our clinical data experiment, we observed CD of
0.26 ± 0.08mm for the maxillary first molar and 0.28 ± 0.07mm for
the mandibular first molar.

3.4 Internal supporting structure
optimization results

The internal supporting structure of the crown was optimized
using the proposed method. The obtained internal porous
structure is shown in Figures 10A, B. The optimized porosity
is around 70%, and the wall thickness is adjusted within [0.2,
0.6] mm.

TABLE 1 The quantitative test results.

Distance (mm)

Maxillary first molar Mandibular first molar

CD 0.26 ± 0.08 0.28 ± 0.07

Mean 0.26 ± 0.07 0.26 ± 0.06

Median 0.22 ± 0.07 0.21 ± 0.06

Max 0.96 ± 0.29 1.11 ± 0.45

Min (0.17 ± 0.06)e−2 (0.15 ± 0.06)e−2

FIGURE 10
Internal supporting structure design of the crown restoration. (A) 2D coronal, sagittal and axial section slices of crown model showing the internal
supporting structure; (B) 3D transparent rendering showing the internal supporting structure.
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To verify the biomechanical property of the optimized internal
supporting structure, finite element simulations were conducted for the
designed crown with porous internal structures. The crownmaterial was
assumed to be nickel-chromium alloy, with Young’s modulus 214 GPa
and Poisson’s ratio 0.3. A nodal load of 0.5 N was applied to the occlusal
surface with fixed support conditions to the bottom surface of themodel
as shown in Figure 11A. Figure 11B shows the distribution maps of the
deformation displacement and stress for a representative test data under
the given boundary conditions. It can be seen that the stress is uniformly
distributed at all internal locations of the crown and the displacement is
more concentrated in the cusp region. This result is compared to the
simulation of the solid model under the same boundary conditions. The
resultant distribution maps of displacement and stress are demonstrated
in Figure 11C. The optimized porous internal structure diffused the
external pressure and resulted in amore uniform stress distribution than
the solid model, and the material used is also saved due to the porous
architecture.

4 Conclusion

In this paper, we propose an automatic design algorithm for crown
restoration by matching the conditional shape model of the target
crown and its adjacent teeth. The missing crown with realistic occlusal
surface morphology was automatically generated and fit to the finish
line of the preparation. The geometry of the internal supporting
structure was optimized to yield uniform stress distribution. As a
proof of concept, our biomechanical simulation proves that the
porous optimization resulted even stress and strain distribution over
the entire crown.Wewill further validate this advantage with real crown

mechanical test in future study. In future work, we will continue to
expand the data sample library and automate the identification of
missing tooth positions since this method still relies on manual
specification of the target teeth location.
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