84 research outputs found

    Performance enhancement of SSI-LEDs and geometrically confinement of lighting dots by using patterned wafer approaches

    Get PDF
    Solid state incandescent light emitting devices (SSI-LEDs) were first demonstrated in 2013 by Kuo’s group, which have the metal-oxide-semiconductor structure and emit white light directly1. The conductive filaments (CFs) through CAFM figures out that Si wafer has a significant impact on the device performance2, 3, multiplayer dielectric layers structure have also been study to enhance the light emission4. We demonstrate two approaches to improve the performance of SSI-LEDs by using patterned wafer in this work. Please click Additional Files below to see the full abstract

    Chronology of the Basalt Units Surrounding Chang’e-4 Landing Area

    Get PDF
    The Chang’e-4 (CE-4) lunar probe, the first soft landing spacecraft on the far side of the Moon, successfully landed in the Von Kármán crater on 3 January 2019. Geological studies of the landing area have been conducted and more intensive studies will be carried out with the in situ measured data. The chronological study of the maria basalt surrounding the CE-4 landing area is significant to the related studies. Currently, the crater size-frequency distribution (CSFD) technique is the most popular method to derive absolute model ages (AMAs) of geological units where no returned sample is available, and it has been widely used in dating maria basalt on the lunar surface. In this research, we first make a mosaic with multi-orbital Chang’e-2 (CE-2) images as a base map. Coupled with the elevation data and FeO content, nine representative areas of basalt units surrounding the CE-4 landing area are outlined and their AMAs are derived. The dating results of the nine basalt units indicate that the basalts erupted from 3.42 to 2.28 Ga ago in this area, a period much longer than derived by previous studies. The derived chronology of the above basalt units establishes a foundation for geological analysis of the returned CE-4 data

    Beyond Unfolding: Exact Recovery of Latent Convex Tensor Decomposition under Reshuffling

    Full text link
    Exact recovery of tensor decomposition (TD) methods is a desirable property in both unsupervised learning and scientific data analysis. The numerical defects of TD methods, however, limit their practical applications on real-world data. As an alternative, convex tensor decomposition (CTD) was proposed to alleviate these problems, but its exact-recovery property is not properly addressed so far. To this end, we focus on latent convex tensor decomposition (LCTD), a practically widely-used CTD model, and rigorously prove a sufficient condition for its exact-recovery property. Furthermore, we show that such property can be also achieved by a more general model than LCTD. In the new model, we generalize the classic tensor (un-)folding into reshuffling operation, a more flexible mapping to relocate the entries of the matrix into a tensor. Armed with the reshuffling operations and exact-recovery property, we explore a totally novel application for (generalized) LCTD, i.e., image steganography. Experimental results on synthetic data validate our theory, and results on image steganography show that our method outperforms the state-of-the-art methods.Comment: AAAI-202

    Synthesis and biological evaluations of oleanolic acid indole derivatives as hyaluronidase inhibitors with enhanced skin permeability

    Get PDF
    Oleanolic acid (OA) is a natural cosmeceutical compound with various skin beneficial activities including inhibitory effect on hyaluronidase but the anti-hyaluronidase activity and mechanisms of action of its synthetic analogues remain unclear. Herein, a series of OA derivatives were synthesised and evaluated for their inhibitory effects on hyaluronidase. Compared to OA, an induction of fluorinated (6c) and chlorinated (6g) indole moieties led to enhanced anti-hyaluronidase activity (IC50 = 80.3 vs. 9.97 and 9.57 µg/mL, respectively). Furthermore, spectroscopic and computational studies revealed that 6c and 6g can bind to hyaluronidase protein and alter its secondary structure leading to reduced enzyme activity. In addition, OA indole derivatives showed feasible skin permeability in a slightly acidic environment (pH = 6.5) and 6c exerted skin protective effect by reducing cellular reactive oxygen species in human skin keratinocytes. Findings from the current study support that OA indole derivatives are potential cosmeceuticals with anti-hyaluronidase activity

    Label-free analysis of protein biomarkers using pattern-optimized graphene-nanopyramid SERS for rapid diagnosis of Alzheimer’s disease

    Get PDF
    The quantitative and highly sensitive detection of biomarkers such as Tau proteins and Aβ polypeptides is considered one of the most effective methods for the early diagnosis of Alzheimer’s disease (AD). Surface-enhanced Raman spectroscopy (SERS) detection is a promising method that faces, however, challenges like insufficient sensitivity due to the non-optimized nanostructures for specialized analyte sizes and insufficient control of the location of SERS hot spots. Thus, the SERS detection of AD biomarkers is restricted. We reported here an in-depth study of the analytical Raman enhancement factor (EF) of the wafer-scale graphene-Au nanopyramid hybrid SERS substrates using a combination of both theoretical calculation and experimental measurements. Experimental results show that larger nanopyramids and smaller gap spacing lead to a larger SERS EF, with an optimized analytical EF up to 1.1 × 1010. The hybrid SERS substrate exhibited detection limits of 10–15 M for Tau and phospho-Tau (P-Tau) proteins and 10–14 M for Aβ polypeptides, respectively. Principal component analysis correctly categorized the SERS spectra of different biomarkers at ultralow concentrations (10–13 M) using the optimized substrate. Amide III bands at 1200–1300 cm–1 reflect different structural conformations of proteins or polypeptides. Tau and P-Tau proteins are inherently disordered with a few α-helix residuals. The structure of Aβ42 polypeptides transitioned from the α-helix to the β-sheet as the concentration increased. These results demonstrate that the hybrid SERS method could be a simple and effective way for the label-free detection of protein biomarkers to enable the rapid early diagnosis of AD and other diseases

    Study on Induced Current of Iron Plate Irradiated by Pulsed Gamma Rays

    No full text
    To obtain the transient current response law of the metal component irradiated by pulsed gamma rays, the pulsed gamma ray irradiation experiment of the iron plate was carried out on “Qiangguang-I” accelerator. The transient current of iron plate generated by pulsed gamma rays was measured and analysed, and the relationship between the amplitude of pulse current and the dose rate of gamma rays was obtained. The results show that the current response sensitivity of the iron plate is about 5.7×10-7(A/m2)/(Gy/s) when the gamma rays with the energy of 0.8 MeV irradiate the iron plate. The charge deposition rate in the iron plate can be obtained by Monte Carlo simulation, and then it can be converted to gamma ray induced current of the metal component irradiated by gamma rays

    Multiobjective Optimization of Steering Mechanism for Rotary Steering System Using Modified NSGA-II and Fuzzy Set Theory

    Get PDF
    Due to the complicated design process of gear train, optimization is a significant approach to improve design efficiency. However, the design of gear train is a complex multiobjective optimization with mixed continuous-discrete variables under numerous nonlinear constraints, and conventional optimization algorithms are not suitable to deal with such optimization problems. In this paper, based on the established dynamic model of steering mechanism for rotary steering system, the key component of which is a planetary gear set with teeth number difference, the optimization problem of steering mechanism is formulated to achieve minimum dynamic responses and outer diameter by optimizing structural parameters under geometric, kinematic, and strength constraints. An optimization procedure based on modified NSGA-II by incorporating dynamic crowding distance strategies and fuzzy set theory is applied to the multiobjective optimization. For comparative purpose, NSGA-II is also employed to obtain Pareto optimal set, and dynamic responses of original and optimized designs are compared. The results show the optimized design has better dynamic responses with minimum outer diameter and the response decay decreases faster. The optimization procedure is feasible to the design of gear train, and this study can provide guidance for designer at the preliminary design phase of mechanical structures with gear train
    • …
    corecore