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ABSTRACT  

The quantitative and highly sensitive detection of biomarkers such as Tau proteins and Aβ 

polypeptides is considered one of the most effective methods for the early diagnosis of 

Alzheimer’s Disease (AD). Surface-enhanced Raman spectroscopy (SERS) detection is a 

promising method, which faces, however, challenges like insufficient sensitivity due to the non-

optimized nanostructures for specialized analytes sizes and insufficient control of the location of 

SERS hot spots. Thus the SERS detection of AD biomarkers is restricted. We reported here an in-

depth study of the analytical Raman enhancement factor (EF) of the wafer-scale graphene-Au 

nanopyramid hybrid SERS substrates, using the combination of both theoretical calculation and 

experimental measurements. Experimental results show that larger nanopyramids and smaller gap 

spacing lead to larger SERS EF, with an optimized analytical EF up to 1.1×1010. The hybrid SERS 

substrate exhibited detection limits of 10-15 M for Tau and phospho-Tau (P-Tau) proteins and 10-

14 M for Aβ polypeptides, respectively. Principal component analysis correctly categorized the 

SERS spectra of different biomarkers at ultra-low concentrations (10-13 M) using the optimized 

substrate. Amide III bands at 1200 cm-1 to 1300 cm-1 reflect different structural conformations of 

proteins or polypeptides. Tau and P-Tau proteins are inherently disordered with a few α-helix 

residuals. The structure of Aβ42 polypeptides transitioned from α-helix to β-sheet as the 

concentration increased. These results demonstrate that the hybrid SERS method could be a simple 
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and effective way for the label-free detection of protein biomarkers to enable rapid early diagnosis 

of AD and other diseases. 

Keywords: label-free detection, surface-enhanced Raman spectroscopy, Alzheimer's disease, 

phospho-Tau protein, Aβ42 polypeptide, protein secondary structure 

 

1. Introduction 

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by memory loss 

and cognitive impairment. AD affects more than 50 million people worldwide currently, with 

about 135 million people expected to develop by 2050.1-2 Despite impressive efforts over the past 

30 years, there are still no treatments to modify and cure the disease.3 Brain imaging and 

neuropsychological testing are two significant clinical diagnostic methods for AD. Brain imaging 

examinations show characteristic changes in the brains of patients.4 Neuropsychological testing 

could establish cognitive impairment.5 The current research on AD is mainly concentrated on 

interventions to prevent the onset and progression,3 which makes the early diagnosis quite 

significant. The core pathological biomarkers for AD include total tau protein, indicating the extent 

of neurodegeneration; phospho-Tau (P-Tau) protein, associated with neurofibrillary pathological 

changes; and amyloid β42 (Aβ42) peptide, indicative of cortical amyloid deposition.6 These core 

biomarkers have high diagnostic accuracy, with sensitivity and specificity of 85-90%, to identify 

prodromal AD in the mild cognitive impairment stage.7 Quantitative and highly sensitive detection 

of proteins is widely studied. To date, the detection of AD biomarkers is mostly based on the 

measurement of specific light absorption, such as enzyme-linked immunosorbent assay (ELISA) 

method, local surface plasmon resonance technology, or chromatography.8 However, these 
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methods suffer from issues such as time-consuming, limited resolution or sensitivity, and 

expensive equipment.9 

Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique 

that enables highly sensitive detection of analytes at low concentrations.10-11 The generally 

accepted mechanisms of SERS include electromagnetic enhancement and chemical 

enhancement.12 The application of SERS in protein detection has been widely studied. Zhu et al. 

developed a SERS aptasensor based on a hydrophobic assembled nanoacorn with improved 

reproducibility and reduced nonspecific binding effect,13 and then demonstrated the ability of the 

substrate to profile well-characterized exosome proteins including CD63, HER2 and EpCAM. Ma 

et al. modified Ag nanoparticles with different metal ions as SERS substrates, and investigated the 

SERS spectra of Tau proteins phosphorylated at different sites.14 Park et al. detected the AD 

markers Tau protein and Aβ42 peptide using three-dimensional (3D) gold nanowire arrays 

prepared by nanoimprinting as solid SERS substrates, and obtained the limit of detections (LODs) 

of 10-11 moles per liter (M) and 10-9 M of the two biomarkers, respectively, corresponding to a 

SERS enhancement factor (EF) of 5.5×105.15 Xie group investigated the self-association and LODs 

of Aβ peptides in detail,16-17 and further demonstrated a convolutional neural network-based AD 

diagnosis approach using the SERS fingerprints of human cerebrospinal fluid (CSF).18 Compared 

with conventional disease diagnosis methods such as ELISA, chromatography, and mass 

spectrometry, SERS technology has the advantages of high sensitivity and convenience of 

detection and analysis, which makes it highly promising in the early diagnosis of some intractable 

diseases such as AD.15 

High-performance substrate paves the way for the application of SERS technology.19 Nano-

pyramidal SERS substrate is a universal platform with label-free detection capability, and related 
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research has been carried out. Jiang et al. first fabricated large-scale metallic nanopyramid arrays 

based on non-close-packed SiO2 two-dimensional (2D) colloidal crystals.20-21 However, the 

preparation of 2D colloidal crystals by spin coating required precise control of the parameters as 

well as the concentration of colloidal dispersion, and thus was very difficult to operate.22 Xie et al. 

improved the preparation process and fabricated large-area nanopyramid arrays based on two-

dimensional colloidal crystals of polystyrene (PS) microspheres prepared by self-assembly on the 

water surface.23 Graphene monolayer was then transferred on the nanopyramid substrate to 

construct a graphene-Au nanopyramid (GAuNP) hybrid SERS platform, which excelled in the 

detection of various biochemical molecules. Our group has further improved the large-area 

uniformity of the hybrid SERS substrate by introducing the Langmuir-Blodgett method,24 and 

performed high-cleanliness graphene transfer by using PMMA/paraffin as the supporting layer.25 

We have also proved the nanopyramidal SERS substrates exhibit excellent structural uniformity, 

spectral uniformity, stability as well as reliability.24 However, the impact of nanopyramid size and 

gap distance on the SERS-enhanced performance of the hybrid system is still lacking. The size of 

the nanostructures has a decisive effect on the SERS EF.26 Weaker Raman signals by non-

optimized SERS biochips could be challenges for the quantitative detection, identification and 

structure analysis of protein molecules. Thus it is necessary to optimize the size of the 

nanopyramids and the sensitivity of the hybrid platform. 

In this study, we investigated the impact of nanopyramid size and gap spacing on the 

electromagnetic field enhancement of the GAuNP hybrid SERS substrates by FDTD simulations. 

Using colloidal lithography and a series of micro-nano fabrication processes, four types of GAuNP 

SERS substrates with different pyramid sizes and pitches were fabricated. Based on the pattern-

optimized SERS substrate and principal component analysis (PCA) method, we have achieved 
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breakthroughs in label-free structure analysis, quantification, and species identification of three 

types of important AD biomarkers, which demonstrates the versatility of the SERS substrates. 

Compared with traditional methods such as ELISA, this protocol does not require elaborate sample 

preparation and complex analysis procedures, nuclear magnetic resonance, and cryo-electron 

microscopy, and is of significance for the early ultrasensitive diagnosis of AD. 

2. Experimental Section 

2.1. FDTD simulation. 3D FDTD simulation was performed to calculate the electromagnetic field 

distribution of the Au nanopyramidal substrates. Models composed of two Au nanopyramids 

were built and the conformal mesh size was set down to 0.5 nm (x, y, and z directions). The 

curved graphene model prebuilt in the 3D modeling software was imported to FDTD solutions 

in the STL format. The optical constants of materials were taken from Ref.27-28 The perfectly 

matched layer boundary condition was applied in all directions. The amplitude |E0| of the 

incident light is 1. 

2.2. Au nanopyramidal substrate fabrication. The SERS substrates composed of Au 

nanopyramids were fabricated by colloidal lithography and a series of modern semiconductor 

nanofabrication processes. PS microspheres, Cr layer and the SiO2 layer were successively 

used as masks to perform the dry and wet etching. Other techniques used include E-Beam 

deposition, lift-off, magnetron sputtering, and graphene transfer.24 Fig. S1 shows the 

schematic illustration of the process. The commercial chemical vapor deposition (CVD) 

graphene was purchased from Wuxi Huicheng Graphene Tech&Appl Co., Ltd. Nanopyramids 

with different bottom side lengths and spacings were realized by precisely controlling the 
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diameter of the PS microspheres. Other details of the process can be found in our prior 

publications.22, 24  

2.3. Preparation of the SERS samples. R6G and Aβ42 peptides were purchased from Sigma 

(Shanghai, China), Tau and P-Tau proteins were purchased from novoprotein (Suzhou, China) 

and Abcam (Shanghai, China), respectively. The molecules were dissolved in de-ionic (DI) 

water. R6G solution at 10-2 M was firstly prepared, and then diluted 10-fold in sequence to 

prepare solutions at other concentrations. Protein solutions at 10-6 M were firstly prepared and 

then diluted 10-fold in sequence. 10 μL aqueous solution of each chemical was dropped onto 

the graphene hybrid SERS substrate in 5 times and detected after drying. 

2.4. Characterization methods. Scanning electron microscope (SEM) measurements were 

performed by an FEI Quanta FEG 250, with an acceleration voltage of 10 kV. Raman spectra 

were acquired with a LabRAM HR Evolution (Horiba) Raman microscope system, equipped 

with a standard 633 nm laser. The single spectral power was kept at 1.75 mW with 600 

lines/mm grating. Raman spectra in this study have been baseline corrected and averaged. 

3. Results and Discussion 

3.1. FDTD simulation of the nanopyramidal substrate. 

The Au nanopyramidal SERS substrates have been studied by several groups,21, 23 however, the 

size effect study is still lacking. This is significant for the SERS because the size of the 

nanostructures strongly affects the EF of the SERS substrate.29 To clarify the impact of the 

nanopyramid size and gap distance, we simulated the electromagnetic field enhancement of Au 

nanopyramid substrates with different sizes by FDTD simulation. The FDTD method is based on 
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Maxwell's equations (Eq. 1 and 2), solving the numerical solution by differential discretization.30 

In Cartesian coordinates, Maxwell's curl equation can be expressed into scalar equations as Eq. 

SE1 and SE2. The electric and magnetic fields alternate with time. Maxwell's equations were 

further discretized into difference form by taking a half-time step (Eq. SE3). Each field component 

of E⃑  and H⃑  can be solved alternately on a discrete spatial and temporal grid cell, and the 

electromagnetic field in space at a later time can be obtained.31 

∇ × E⃑ = - 
∂B⃑

∂t
                              (1) 

∇ × H⃑ = J⃑ + 
∂D⃑

∂t
                             (2) 

where E⃑ , D⃑ , H⃑ , B⃑ , and J⃑ are the electric field intensity vector, electric displacement vector, 

magnetic field intensity vector, magnetic induction intensity vector and current density vector, 

respectively. In an isotropic medium, the relationships between the above physical quantities are 

shown in Eq. 3. 

D⃑ = ε E⃑,    B⃑ = μ H⃑,   J⃑ = σ E⃑                (3) 

where ε, μ, σ are the medium dielectric constant, magnetic permeability coefficient and electrical 

conductivity, respectively. 

Fig. 1a illustrates the model consisting of two Au nanopyramids with a conformal curved 

graphene monolayer on its surface. Figure 1b is a contour plot of the maximum value of the 

electromagnetic field strengths for Au pyramid arrays with different pyramid gaps (X-axis) and 

pyramid bottom side lengths (Y-axis). The theoretical EF of the SERS substrate is proportional to 

|E|4.32 It can be seen in Fig. 1b that the highest electromagnetic field strengths gradually augmented 
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from the lower left to the upper right (the color changes from blue to red), which suggests that 

larger nanopyramid sizes and smaller gap distances facilitate the increase of SERS EF. The 

nanopyramid substrates with sizes in the dark gray region in Fig. 1b are not available using 

colloidal lithography method due to the limitation of the PS ball size (Fig. S2). The dashed black 

line with a slope of 2.41 shows the critical line, on which the larger the nanopyramid is, the higher 

the EF value is. The theoretical EFs of the four nanopyramids SERS substrates marked in Fig. 1b 

(#1 to #4) are 9.0×108, 1.8×108, 5.5×107, and 1.5×106, respectively. Moreover, we found that the 

theoretical EFs of GAuNP substrate and AuNP substrate are rather similar.24 This suggests the 

contribution of graphene to the SERS enhancement mainly lies in the chemical enhancement 

mechanism, which cannot be revealed by FDTD simulation.33 

 

Figure 1. The electromagnetic field distributions of the GAuNP substrates by FDTD simulation. a. 

The model of the GAuNP substrate. b. Contour plots of the highest electromagnetic field strengths 

for GAuNP substrates with different pyramid sizes and gap distances. c. Electromagnetic field 
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distributions on the x-z cross-sections of the four samples in Fig. 1b. Insets (the side length is 20 

nm) show the enlarged views of the apex regions of the nanopyramids. 

The distribution of electromagnetic fields of single nanopyramids with different sizes was also 

studied. Fig. 1c (i-iv) shows the distributions of the enhanced electromagnetic fields on the x-z 

cross-section of #1 ~ #4 nanopyramidal substrates, respectively. The maximum electromagnetic 

field enhancement of the nanopyramid-type SERS substrate mainly gathered on the pyramid apex 

region, which is the “hot spot” of the SERS substrate. The insets show more details of the 

electromagnetic field distribution around the apex regions of the nanopyramids. It can be seen 

from the insets that the hot spots of the nanopyramids range from a few nanometers to a dozen 

nanometers, and their values decay sharply away from the apex. The intensity of the hot spot is 

positively correlated with the theoretical EF. The electromagnetic field distribution on the x-y 

section of sample #1 was also investigated, as shown in Fig. S4. In addition to the highest SERS 

enhancement in the apex region, the edges of the nanopyramids also exhibit a certain degree of 

SERS enhancement.  

3.2. Analytical EF study of AuNPs substrates with different sizes.  

To verify the effect of the nanopyramid size and gap distance on the SERS EF, we fabricated 

nanopyramidal substrates with sizes of #1 ~ #4 in Fig. 1b by colloidal lithography and a series of 

micro-nano processes. The tomography of prepared substrates was shown in SEM Figs. 2a ~ 2d, 

respectively.34 Nanopyramids showed extremely smooth surfaces.35 Figs. 2e ~ 2h were the 

corresponding surface morphology of substrates covered by graphene monolayers (verified in Fig. 

S3). The colloidal lithography was based on the monolayer of PS microspheres, the diameters of 

which used for #1 ~ #4 samples were 500 nm, 350 nm, 500 nm and 200 nm, respectively. 

Benefiting from the careful and precise control, the sizes of the prepared nanopyramids and gap 
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distances (extracted from the SEM images) were well consistent with the designed ones, as shown 

in Fig. 2i. 

 

Figure 2. SEM characterization of the prepared substrates. a) ~ d) SEM figures of AuNP 

substrates with #1 ~ #4 sizes fabricated in this study, respectively. e) ~ f) SEM figures of 

GAuNP substrates with #1 ~ #4 sizes, respectively. i) Pyramid size characterization of the 4 

substrates. 

Fig. 3a shows the illustration of protein detection on the graphene-Au nanopyramid hybrid 

SERS system. The analytical EFs of different substrates were explored by examining R6G as a 

probe molecule (Fig. S5 ~ S6), and the results were shown in Fig. 3b. The analytical EFs of the 

AuNPs substrates well agree with the theoretical predictions. The analytical EFs of the GAuNP 
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substrates are approximately an order of magnitude higher than the AuNP substrates. GAuNP 

substrate with #1 size shows the highest analytical EF of 1.11010, followed by the EFs of 

substrates with #2, #3 and #4 sizes. The variation trends of the analytical EF of the AuNP and 

GAuNP substrates with different sizes both agree with that of the theoretical EF (red balls). The 

detection of protein or polypeptide also supports this observation. Fig. 3c and Fig. 3d reveal SERS 

spectra of Tau protein and Aβ42 peptide at 10-11 M obtained using different GAuNP substrates, 

respectively. The Raman intensity variations of the protein and peptide are consistent with the EF 

relationships of the SERS substrates. This demonstrates that the SERS substrates are suitable for 

protein detection. The #1 size GAuNP hybrid substrate turned out to be the optimal substrate with 

the strongest EF and thus was used for the subsequent research. Compared with other types of 

solid substrates, the #1 system also shows superior SERS EFs, as Fig. S8 and Table S4 show. 
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Figure 3. SERS detection using the GAuNPs substrate. a) The schematic diagram of the detection 

principle. b) The analytical SERS EFs of different substrates for the detection of R6G molecules. 

c) SERS spectra of 10-11 M Tau protein obtained using GAuNPs substrates. d) SERS spectra of 10-

11 M Aβ42 peptides. 

3.3. SERS analysis of Tau and P-Tau protein.  

To examine the capability of the GAuNP SERS substrate in clarification of different proteins, 

Tau and P-Tau were analyzed using the #1 GAuNPs substrate. According to a statistical analysis 

involving over 2000 individuals, the median concentrations of total Tau protein and P-Tau in the 

CSF of normal individuals are approximately 3.5×10-12 M (230 ng/L) and 5.8×10-13 M (38 ng/L), 

respectively; while these concentrations increase to approximately 9.8×10-12 M and 1.3×10-12 M 

in CSF of AD patients, respectively.36 The Tau and P-Tau protein used in this study are full-length, 

containing 441 amino acids. This is quite similar to the real situation in CSF of AD patients.37 

Firstly, the detection sensitivity of Tau and P-Tau protein was studied, and the results were shown 

in Fig. 4a and 4b. The LODs of both Tau and P-Tau proteins reached the lowest concentration of 

10-15 M, which was more sensitive than LODs of other SERS methods8, 15 and proceeds the 

requirement of AD patients’ CSF detection. The spectrum of Tau protein is quite similar to that of 

P-Tau, because the amino acid number and structure of both proteins are almost the same. Tau 

protein has been considered an intrinsically disordered protein (IDP) with a lack of well-defined 

secondary structures.38 To simulate the real situation in the CSF of AD patients as much as possible, 

Tau and P-Tau with 441 amino acid residues were selected, which were more similar than proteins 

used in other literature.14 The 441-residue Tau protein selected in this study has 79 phosphorylation 

sites, ~8-10 of which are generally phosphorylated in healthy individuals.8 In the brains of AD 

patients, Tau protein is phosphorylated at more than 20 sites.8 In this study, P-Tau protein was 
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obtained by phosphorylating Tau protein through GSK-3β treatment, which could phosphorylate 

Tau on Ser199, Thr231, Ser396, Ser400, Ser404, and Ser413.39 It is noted here that aberrant 

phosphorylation is a key event triggering the pathological aggregation in AD, because it leads to 

misfolding and conformational changes of Tau proteins.39 

 

Figure 4. SERS analysis of Tau and P-Tau proteins. a) SERS spectra of Tau protein at different 

concentrations. b) SERS spectra of P-Tau protein at different concentrations. c) Liner fit (solid line 

from 10-11 M to 10-14 M) of the relationship between normalized intensity of the proteins and 

logarithmic-scale concentrations. The correlation coefficient R2 is above 0.99. d) SERS spectra of 

the mixed sample of Tau and P-Tau proteins at 10-13 M. e) PCA analysis of Tau and P-Tau proteins 

at 10-13 M. f) Schematic diagram of the structures of Tau and P-Tau proteins. Insets are enlarged 

views of selected regions in the corresponding figures. 

Table 1. Assignment of the Raman peaks of Tau and P-Tau proteins.40-41 

Raman shift (cm-1) Peak assignment 
638 Protein tyrosine (C-C twisting) 
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716 C-N 
733 Phosphate group 
742 Tryptophan 
822 Tyrosine (Phosphate group) 
853 Tyrosine (Ring breathing mode) & Proline (C-C stretch) 
860 Tyrosine (Phosphate group) 
910 Serine 
920 Proline (C-C stretch) 
983 Tyrosine 
1004 Phenylalanine 
1050 Proteins (C-O stretching, C-N stretching) 
1061 C-C in-plane bending 
1083 Phosphate vibrations 
1104 Phenylalanine 
1223 Proteins 
1237 Amide III & Glycine & Proline 
1252 C-O4 aromatic stretch 
1460 Lipids (CH2/CH3 deformation) 

 

The obvious differences between the two spectra mainly include changes in some peak shapes 

and relative intensities, mainly at around 800 cm-1 ~ 900 cm-1 and 1000 cm-1. Table 1 shows the 

peak assignment of Tau and P-Tau proteins. Each protein exhibits a characteristic peak, for 

instance, 742 cm-1 (Tryptophan) for Tau protein and 733 cm-1 (Phosphate group) for P-Tau 

protein.40-41 The above differences may be caused by the slight change in the structure of the P-

Tau protein after phosphorylation, which further results in changes in the contacts of certain groups 

with SERS hotspots. The amide III band mainly reflects N-H in-plane bending and C-N stretching, 

as well as Cα-C stretching and C=O in-plane bending, and further reflects the conformational 

changes of proteins.42 Here the amide III band near 1237 cm-1 has been attributed to the residual 

α-helix structure in the full-length peptide chain.43 

Graphene is a chemically stable material, and when combined with AuNPs substrates, it 

enhances biocompatibility. The Raman peak of graphene was therefore used to normalize the 
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whole spectra, which effectively avoided the Raman intensity fluctuation caused by the 

heterogeneity of the hot spots, leading to a great enhancement of the quantitative analysis 

capability of the substrate. Tyrosine, phenylalanine, amide III bands, and C-H, C-N vibrations in 

organic structures are all strongly expressed. Among them, the peak of phenylalanine at 1004 cm-

1 remained stable with the conformational changes and was therefore chosen to calibrate the protein 

concentration. The normalized intensities of the two spectra of proteins were linearly related to the 

concentration on a logarithmic scale from 10-11 M to 10-14 M, with a correlation coefficient R2 

above 0.99, as shown in Fig. 4c. This proves the quantitative analysis ability of the hybrid platform. 

The normalized intensities at 10-15 M both deviate upward from the linear relationship because not 

all hot spots will have adsorbed protein molecules at this ultra-low concentration.16 In addition, 

Fig. 4d shows the spectrum of the mixed sample of Tau and P-Tau proteins at 10-13 M. The 

characteristic peaks of both molecules appear in the spectrum, which further suggests the high 

sensitivity of the GAuNP substrate. 

To identify normal Tau protein and P-Tau protein based on SERS spectra, PCA analysis was 

performed. Fig. 4e shows the classification results based on the full spectrum, and the spectra of 

the two proteins were divided into two distinct classes (blue and orange ovals) after dimensionality 

reduction to 2D. All spectra were normalized using the G peak of graphene. In addition, 18 peaks 

with the greatest difference were also selected from the difference spectrum (Fig. S9) as the input 

principal components. The PCA results are shown in Fig. S10, where the spectra of Tau and P-

Tau proteins were successfully divided into two sets. These results demonstrate the excellent 

reliability and efficiency of the #1 hybrid SERS substrate in distinguishing proteins with tiny 

differences at ultra-low concentrations. PCA analysis was also performed on the SERS spectra of 

the Tau and P-Tau proteins prepared on the #2 hybrid SERS substrate, as shown in Fig. S11. The 
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results showed that the spectra of Tau and P-Tau protein could not be distinguished by PCA using 

either the full-spectrum or 18-peaks as inputs. This indicates that the size and structure of the 

substrate strongly impact the detection results of proteins. Fig. 4f shows a schematic diagram of 

the intrinsically disordered structures of Tau and P-Tau proteins. P-Tau protein reduces the affinity 

of protein to microtubules while increasing the aggregation and fibrosis. P-Tau is the main 

component of AD neurofibrillary tangles.44 

3.4. SERS analysis of Aβ42 polypeptide.  

Both Aβ42 and Aβ40 polypeptides have recently been extensively studied as AD biomarkers, 

however, Aβ42 has been found a major component of amyloid plaques in AD patients’ CSF.45 

Accurate detection of Aβ42 is more meaningful for the diagnosis of AD. The median concentration 

of Aβ42 in the CSF of normal individuals is 1.8×10-10 M (807 ng/L), while for AD patients, the 

concentration decreases to 1.2×10-10 M.36 Here we used the #1 GAuNP substrate to investigate the 

Aβ42 polypeptides. As shown in Fig. 5a, the LOD of Aβ42 polypeptide reached 10-14 M with an 

analytical EF of about 2108 (Fig. S7), which reveals a higher sensitivity than SERS methods 

reported in literatures15, 46 and conventional protein detection method ELISA, with a LOD of 

picograms per milliliter.47-48 Table 2 shows the peak assignment of Aβ42 peptides. The relationship 

between the normalized spectral intensity of Aβ42 polypeptide and the concentration was studied. 

The peak at 1004 cm-1 can be assigned to phenylalanine and its normalized intensity is irrelevant 

to the secondary structure of Aβ42. The normalized intensity of Aβ42 was linearly increased with 

the concentration in the logarithmic scale, as shown in Fig. 5b. 
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Figure 5. SERS analysis of Aβ42 polypeptide. a) SERS spectra of Aβ42 peptides at different 

concentrations. b) The relationship between the normalized intensity and concentration in the 

logarithmic scale of different peaks of Aβ42 peptide. c) Schematic diagram of the α-helix and β-

sheet structure of Aβ42 polypeptide. d) PCA analysis of the three biomarkers at 10-13 M.  

Table 2. Assignment of the Raman peaks of Aβ42 peptides.41, 49 

Raman shift (cm-1) Peak assignment 
683 Tryptophan 
831 Tyrosine 
859 Tyrosine 
950 Valine 
980 C-C stretching 
1004 Phenylalanine 
1090 C-C stretch 
1268 Amide III 
1455 CH2 deformation 
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The broadband near 1268 cm-1 can be assigned to the amide III band, which is associated with 

the conformational change of Aβ polypeptides. At lower concentrations (<10-12 M), the normalized 

intensity of the amide III band linearly increased with the concentration in the logarithmic scale, 

which is mainly due to the α-helical structure of the Aβ protein.42 The α-helix is the right-handed 

helical conformation of the protein (as shown in Fig. 5c) formed by hydrogen bonds between the 

backbone N-H and C=O groups.50 The normalized intensity of the amide III band deviates 

downward from the linear direction with increasing Aβ protein concentration. This is mainly due 

to the secondary structure transition from α-helix to β-sheet in some Aβ42 polypeptides. The 

original α-helical structure of Aβ42 is susceptible to misfolding, and this misfolding is considered 

to be the first step in the process of Aβ oligomerization, polymerization, and fibrillation.51 

Misfolded proteins often interact with other normal proteins and further cause them to transit into 

a neurotoxic misfolded state, and this is the reason why they are often referred to as infectious 

conformations.52 In this study, when the concentration of Aβ polypeptides was low, almost all the 

peptides were in the α-helical structure, and the normalized intensity of 1268 cm-1 linearly 

increased with the concentration in the logarithmic scale. However, as the peptide concentration 

increased, the amount of misfolded Aβ (β-sheet secondary structure) increased, and thus the 

misfolded protein infected other normal proteins. The β-sheet structure peptide contributes less to 

the intensity of the amide III band, resulting in a downward deviation of the normalized peak 

intensity at 1268 cm-1 from the linear increasing relationship.15 Fig. S13 shows the Raman 

spectrum change of Aβ42 with time. 

Fig. 5c illustrates a schematic diagram of the secondary structure of Aβ42 polypeptides. 

Different from the α-helix structure with the right-handed helical feature, the β-sheet conformation 

is formed by the lateral aggregation of two or more nearly fully extended peptide chains, with the 



 20

formation of regular hydrogen bonds between N-H and C=O groups on the adjacent backbones.53 

Further mixed solution testing was conducted using Aβ42 peptide and Tau protein mixtures at 10-

13 M, and the results are shown in Fig. S14. The spectra of mixed samples involve peaks unique to 

Tau protein, Aβ42 peptide, as well as those shared by both. PCA analysis was then performed on 

spectra of the three biomarkers, and the results were shown in Fig. 5d, where the biomarkers were 

correctly and clearly classified into three sets. The principal components are the linear 

combinations of the original input variables and maximize the preservation of the original dataset 

information. The smaller projection lengths of the Aβ42 peptide in the PC1 and PC2 axis 

correspond to the more monotonic SERS spectra, which are determined by fewer amino acids of 

the peptide. In addition, Aβ polypeptides at different concentrations were also analyzed by PCA 

method to reveal the structural changes of Aβ42 peptide. Table 3 shows the sensitivity and 

accuracy values of different biomarkers. Sensitivity is defined as the true positive rate or number 

of correctly identified analytes, and specificity is defined as the true negative rate. The high 

sensitivity and specificity demonstrate the effectiveness of the strategy in distinguishing the AD 

biomarkers. As shown in Fig. S12, spectra at different concentrations have been correctly 

classified by the PCA analysis of both the full spectrum and the 18 peaks spectrum. The 

dimensionality-reduced point set also reveals the original structure information of Aβ42 at 

different concentrations. Fig. S12 shows that when the concentration reaches 10-11 M and 10-10 M, 

the dispersion of the 2D point set significantly increases. This is related to the fact that at this 

concentration, Aβ42 peptides have a mixture of α-helix and β-sheet structures. The quantitatively 

high-sensitive quantitative detection, conformational analysis and protein species identification of 

three proteins (or polypeptides) pave the way to the practical application of SERS for the detection 
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of protein biomarkers for early diagnosis of AD. In addition, this SERS platform can be further 

extended to other peptide and protein biomarkers detection for a range of disease diagnostics. 

Table 3. Sensitivity and accuracy of different biomarkers. 

Analyte Sensitivity (%) Accuracy (%) 
Tau protein 100 97.0 
P-Tau protein 100 100 
Aβ42 peptide 100 99.2 

 

4. Conclusion 

In conclusion, we reported the label-free detection with high sensitivity and specification of 

three AD biomarkers, i.e. Tau, P-Tau and Aβ42 peptides using the graphene-Au pyramids hybrid 

SERS platform. The impact of nanopyramid size and gap distance on the SERS EF was studied by 

FDTD simulations and experimental validations. The SERS EF was found to be facilitated by 

larger pyramid size and smaller gap distance. The optimized #1 GAuNP substrate shows a high 

analytical EF of 1.11010. Such hybrid SERS substrates exhibit ultra-sensitivity, with LOD of 10-

15 M for Tau (P-Tau) proteins and 10-14 M for Aβ42 peptide, respectively. PCA analysis correctly 

categorized the SERS spectra of normal and phospho-Tau proteins as well as the Aβ peptide using 

the pattern-optimized substrate. Amide III bands located at different Raman shifts indicate 

different structural conformations of the detected proteins or polypeptides. For Aβ42, the 

normalized intensity of the amide III band at 1268 cm-1 deviated downward from the linear 

increasing relationship, which was attributed to the secondary structure transition of some Aβ 

polypeptides from α-helix to β-sheet when the concentration increased. These results demonstrate 

that the GAuNP hybrid SERS platform can potentially serve as an addition or alternative to 

traditional analytical methods for the assistance of early diagnosis of AD. 
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