8,164 research outputs found

    Anticipating Daily Intention using On-Wrist Motion Triggered Sensing

    Full text link
    Anticipating human intention by observing one's actions has many applications. For instance, picking up a cellphone, then a charger (actions) implies that one wants to charge the cellphone (intention). By anticipating the intention, an intelligent system can guide the user to the closest power outlet. We propose an on-wrist motion triggered sensing system for anticipating daily intentions, where the on-wrist sensors help us to persistently observe one's actions. The core of the system is a novel Recurrent Neural Network (RNN) and Policy Network (PN), where the RNN encodes visual and motion observation to anticipate intention, and the PN parsimoniously triggers the process of visual observation to reduce computation requirement. We jointly trained the whole network using policy gradient and cross-entropy loss. To evaluate, we collect the first daily "intention" dataset consisting of 2379 videos with 34 intentions and 164 unique action sequences. Our method achieves 92.68%, 90.85%, 97.56% accuracy on three users while processing only 29% of the visual observation on average

    2019 Overview

    Get PDF
    The CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews, and reports of novel findings of therapeutic relevance to the central nervous system. Its focus includes clinical pharmacology, drug development, and novel methodologies for drug evaluation in neurological and psychiatric diseases. We are pleased to announce that CNS Neuroscience & Therapeutics has become an Open‐Access Journal as of January 2019. This would allow wider dissemination of scientific knowledge and facilitate collaborative efforts toward advancing novel and solid research on the maintenance of brain homeostasis and repairing the aging and dysfunctional brain

    Binary tree summation Monte Carlo simulation for Potts models

    Full text link
    In this talk, we briefly comment on Sweeny and Gliozzi methods, cluster Monte Carlo method, and recent transition matrix Monte Carlo for Potts models. We mostly concentrate on a new algorithm known as "binary tree summation". Some of the most interesting features of this method will be highlighted - such as simulating fractional number of Potts states, as well as offering the partition function and thermodynamic quantities as functions of temperature in a single run.Comment: 9 pages, 2 figures, for StatPhys-Taiwan 2002 conferenc

    Diverse anisotropy of phonon transport in two-dimensional IV-VI compounds: A comparative study

    Full text link
    New classes two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport property is one of the fundamental physical parameters. In this paper, we systematically investigated the phonon transport properties of 2D orthorhombic group IV-VI compounds of GeSGeS, GeSeGeSe, SnSSnS and SnSeSnSe by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite the similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Young's modulus and lattice thermal conductivity (κ\kappa), etc. Especially, the κ\kappa along the zigzag and armchair directions of monolayer GeSGeS shows the strongest anisotropy while monolayer SnSSnS and SnSeSnSe shows an almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in detail. With limited size, the κ\kappa could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications in nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and aplications in emerging technologies.Comment: 14 pages, 8 figures, 2 table

    A dual-analytes responsive fluorescent probe for discriminative detection of ClO− and N2H4 in living cells

    Get PDF
    Hydrazine (N2H4) and ClO− are very harmful for public health, hence it is important and necessary to monitor them in living cells. Herein, we rationally designed and synthesized a dual-analytes responsive fluorescent sensor PTMQ for distinguishing detection of N2H4 and ClO−. PTMQ underwent N2H4-induced double bond cleavage, affording colorimetric and green fluorescence enhancement with good selectivity and a low detection limit (89 nM). On the other hand, PTMQ underwent ClO−-induced sulfur oxidation and displayed red fluorescence lighting-up response towards ClO− with good selectivity, rapid response (<0.2 min) and a low detection limit (58 nM). Moreover, PTMQ was successfully employed for in-situ imaging of N2H4 and ClO− in living cellsinfo:eu-repo/semantics/publishedVersio
    corecore