13,152 research outputs found

    Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition

    Full text link
    Motion representation plays a vital role in human action recognition in videos. In this study, we introduce a novel compact motion representation for video action recognition, named Optical Flow guided Feature (OFF), which enables the network to distill temporal information through a fast and robust approach. The OFF is derived from the definition of optical flow and is orthogonal to the optical flow. The derivation also provides theoretical support for using the difference between two frames. By directly calculating pixel-wise spatiotemporal gradients of the deep feature maps, the OFF could be embedded in any existing CNN based video action recognition framework with only a slight additional cost. It enables the CNN to extract spatiotemporal information, especially the temporal information between frames simultaneously. This simple but powerful idea is validated by experimental results. The network with OFF fed only by RGB inputs achieves a competitive accuracy of 93.3% on UCF-101, which is comparable with the result obtained by two streams (RGB and optical flow), but is 15 times faster in speed. Experimental results also show that OFF is complementary to other motion modalities such as optical flow. When the proposed method is plugged into the state-of-the-art video action recognition framework, it has 96:0% and 74:2% accuracy on UCF-101 and HMDB-51 respectively. The code for this project is available at https://github.com/kevin-ssy/Optical-Flow-Guided-Feature.Comment: CVPR 2018. code available at https://github.com/kevin-ssy/Optical-Flow-Guided-Featur

    Nonlocality-controlled interaction of spatial solitons in nematic liquid crystals

    Full text link
    We demonstrate experimentally that the interactions between a pair of nonlocal spatial optical solitons in a nematic liquid crystal (NLC) can be controlled by the degree of nonlocality. For a given beam width, the degree of nonlocality can be modulated by varying the pretilt angle of NLC molecules via the change of the bias. When the pretilt angle is smaller than pi/4, the nonlocality is strong enough to guarantee the independence of the interactions on the phase difference of the solitons. As the pretilt angle increases, the degree of nonlocality decreases. When the degree is below its critical value, the two solitons behavior in the way like their local counterpart: the two in-phase solitons attract and the two out-of-phase solitons repulse.Comment: 3 pages, 4 figure

    A multi-sensor based online tool condition monitoring system for milling process

    Get PDF
    Tool condition monitoring has been considered as one of the key enabling technologies for manufacturing optimization. Due to the high cost and limited system openness, the relevant developed systems have not been widely adopted by industries, especially Small and Medium-sized Enterprises. In this research, a cost-effective, wireless communication enabled, multi-sensor based tool condition monitoring system has been developed. Various sensor data, such as vibration, cutting force and power data, as well as actual machining parameters, have been collected to support efficient tool condition monitoring and life estimation. The effectiveness of the developed system has been validated via machining cases. The system can be extended to wide manufacturing applications
    corecore