3,238 research outputs found

    Nonlocality-controlled interaction of spatial solitons in nematic liquid crystals

    Full text link
    We demonstrate experimentally that the interactions between a pair of nonlocal spatial optical solitons in a nematic liquid crystal (NLC) can be controlled by the degree of nonlocality. For a given beam width, the degree of nonlocality can be modulated by varying the pretilt angle of NLC molecules via the change of the bias. When the pretilt angle is smaller than pi/4, the nonlocality is strong enough to guarantee the independence of the interactions on the phase difference of the solitons. As the pretilt angle increases, the degree of nonlocality decreases. When the degree is below its critical value, the two solitons behavior in the way like their local counterpart: the two in-phase solitons attract and the two out-of-phase solitons repulse.Comment: 3 pages, 4 figure

    Diffusion–reaction–induced stress in moving boundary cylindrical Li-ion battery electrodes

    Get PDF
    Lithium (Li) inserted into or extracted from the electrode in Li-ion battery causes stress which may cause fracture of the electrode. A moving boundary model in a cylindrical Li-ion battery electrode accounting for reversible electrochemical reaction is obtained. The volumetric change created by Li diffusion and formation of reversible reaction product would generate the diffusion–reaction-induced stress in the electrode. The constitutive relation among Li concentration, reaction product, and stress is derived, and the numerical solutions of the concentration, reaction product, and stress fields are obtained. The effects of phase transformation and reversible electrochemical reaction on Li diffusion and stress in a cylindrical Li-ion battery electrode are analyzed

    Computing solution space properties of combinatorial optimization problems via generic tensor networks

    Full text link
    We introduce a unified framework to compute the solution space properties of a broad class of combinatorial optimization problems. These properties include finding one of the optimum solutions, counting the number of solutions of a given size, and enumeration and sampling of solutions of a given size. Using the independent set problem as an example, we show how all these solution space properties can be computed in the unified approach of generic tensor networks. We demonstrate the versatility of this computational tool by applying it to several examples, including computing the entropy constant for hardcore lattice gases, studying the overlap gap properties, and analyzing the performance of quantum and classical algorithms for finding maximum independent sets.Comment: Github repo: https://github.com/QuEraComputing/GenericTensorNetworks.j

    Scaling Behavior and Variable Hopping Conductivity in the Quantum Hall Plateau Transition

    Full text link
    We have measured the temperature dependence of the longitudinal resistivity % \rho_{xx} of a two-dimensional electron system in the regime of the quantum Hall plateau transition. We extracted the quantitative form of scaling function for ρxx\rho_{xx} and compared it with the results of ordinary scaling theory and variable range hopping based theory. We find that the two alternative theoretically proposed scaling functions are valid in different regions.Comment: 4 pages, 4 figure

    Giant photoinduced lattice distortion in oxygen-vacancy ordered SrCoO2.5 thin films

    Full text link
    Despite of the tremendous efforts spent on the oxygen vacancy migration in determining the property optimization of oxygen-vacancy enrichment transition metal oxides, few has focused on their dynamic behaviors non-equilibrium states. In this work, we performed multi-timescale ultrafast X-ray diffraction measurements by using picosecond synchrotron X-ray pulses and femtosecond table-top X-ray pulses to monitor the structural dynamics in the oxygen-vacancy ordered SrCoO2.5 thin films. A giant photoinduced strain ({\Delta}c/c > 1%) was observed, whose distinct correlation with the pump photon energy indicates a non-thermal origin of the photoinduced strain. The sub-picosecond resolution X-ray diffraction reveals the formation and propagation of the coherent acoustic phonons inside the film. We also simulate the effect of photoexcited electron-hole pairs and the resulting lattice changes using the Density Function Theory method to obtain further insight on the microscopic mechanism of the measured photostriction effect. Comparable photostrictive responses and the strong dependence on excitation wavelength are predicted, revealing a bonding to anti-bonding charge transfer or high spin to intermediate spin crossover induced lattice expansion in the oxygen-vacancy films.Comment: 12 pages, 4 figures, support materia

    Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity

    Full text link
    We propose a nonlocal entanglement concentration protocol (ECP) for NN-photon systems in a partially entangled W state, resorting to some ancillary single photons and the parity-check measurement based on cross-Kerr nonlinearity. One party in quantum communication first performs a parity-check measurement on her photon in an NN-photon system and an ancillary photon, and then she picks up the even-parity instance for obtaining the standard W state. When she obtains an odd-parity instance, the system is in a less-entanglement state and it is the resource in the next round of entanglement concentration. By iterating the entanglement concentration process several times, the present ECP has the total success probability approaching to the limit in theory. The present ECP has the advantage of a high success probability. Moreover, the present ECP requires only the NN-photon system itself and some ancillary single photons, not two copies of the systems, which decreases the difficulty of its implementation largely in experiment. It maybe have good applications in quantum communication in future.Comment: 7 pages, 3 figure
    corecore