8,550 research outputs found
Recommended from our members
An effective frame breaking policy for dynamic framed slotted aloha in RFID
The tag collision problem is considered as one of the critical issues in RFID system. To further improve the identification efficiency of an UHF RFID system, a frame breaking policy is proposed with dynamic framed slotted aloha algorithm. Specifically, the reader makes effective use of idle, successful, and collision statistics during the early observation phase to recursively determine the optimal frame size. Then the collided tags in each slot will be resolved by individual frames. Simulation results show that the proposed algorithm achieves a better identification performance compared with the existing Aloha-based algorithms
Magnetic control of the pair creation in spatially localized supercritical fields
We examine the impact of a perpendicular magnetic field on the creation mechanism of electron-positron pairs in a supercritical static electric field, where both fields are localized along the direction of the electric field. In the case where the spatial extent of the magnetic field exceeds that of the electric field, quantum field theoretical simulations based on the Dirac equation predict a suppression of pair creation even if the electric field is supercritical. Furthermore, an arbitrarily small magnetic field outside the interaction zone can bring the creation process even to a complete halt, if it is sufficiently extended. The mechanism for this magnetically induced complete shutoff can be associated with a reopening of the mass gap and the emergence of electrically dressed Landau levels
Recommended from our members
From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification
The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost
The Fermi surface of underdoped high-T_c superconducting cuprates
The coexistence of -flux state and d-wave RVB state is considered in
this paper within the slave boson approach. A critical value of doping
concentration is found, below which the coexisting -flux and
d-wave RVB state is favored in energy. The pseudo Fermi surface of spinons and
the physical electron spectral function are calculated. A clear Fermi-level
crossing is found along the (0,0) to (, ) direction, but no such
crossing is detected along the (, 0) to (, ) direction. Also, an
energy gap of d-wave symmetry appears at the Fermi level in our calculation.
The above results are in agreement with the angle-resolved photoemission
experiments which indicate at a d-wave pseudo-gap and a half-pocket-like Fermi
surface in underdoped cuprates.Comment: 18 pages RevTex, 6 figures in PS file
Optimal relaying in heterogeneous delay tolerant networks
In Delay Tolerant Networks (DTNs), there exists only intermittent connectivity between communication sources and destinations. In order to provide successful communication services for these challenged networks, a variety of relaying and routing algorithms have been proposed with the assumption that nodes are homogeneous in terms of contact rates and delivery costs. However, various applications of DTN have shown that mobile nodes should be divided into different classes in terms of their energy requirements and communication ability, and real application data have revealed the heterogeneous contact rates between node pairs. In this paper, we design an optimal relaying scheme for DTNs, which takes into account nodes’ heterogeneous contact rates and delivery costs when selecting relays to minimise the delivery cost while satisfying the required message delivery probability. Extensive results based on real traces demonstrate that our relaying scheme requires the least delivery cost and achieves the largest maximum delivery probability, compared with the schemes that neglect nodes’ heterogeneity
- …