7 research outputs found
TNF-insulin crosstalk at the transcription factor GATA6 is revealed by a model that links signaling and transcriptomic data tensors
Signal -transduction networks coordinate transcriptional programs activated by diverse extracellular stimuli, such as growth factors and cytokines. Cells receive multiple stimuli simultaneously, and mapping how activation of the integrated signaling network affects gene expression is a challenge. We stimulated colon adenocarcinoma cells with various combinations of the cytokine tumor necrosis factor (TNF) and the growth factors insulin and epidermal growth factor (EGF) to investigate signal integration and transcriptional crosstalk. We quantitatively linked the proteomic and transcriptomic data sets by implementing a structured computational approach called tensor partial least squares regression. This statistical model accurately predicted transcriptional signatures from signaling arising from single and combined stimuli and also predicted time-dependent contributions of signaling events. Specifically, the model predicted that an early-phase, Akt-associated signal downstream of insulin repressed a set of transcripts induced by TNF. Through bioinformatics and cell-based experiments, we identified the Akt-repressed signal as glycogen synthase kinase 3 (GSK3)–catalyzed phosphorylation of Ser37 on the long form of the transcription factor GATA6. Phosphorylation of GATA6 on Ser37 promoted its degradation, thereby preventing GATA6 from repressing transcripts that are induced by TNF and attenuated by insulin. Our analysis showed that predictive tensor modeling of proteomic and transcriptomic data sets can uncover pathway crosstalk that produces specific patterns of gene expression in cells receiving multiple stimuli
Planning for automated vehicles with human trust
Recent work has considered personalized route planning based on user profiles, but none of it accounts for human trust. We argue that human trust is an important factor to consider when planning routes for automated vehicles. This paper presents a trust-based route planning approach for automated vehicles. We formalize the human-vehicle interaction as a partially observable Markov decision process (POMDP) and model trust as a partially observable state variable of the POMDP, representing the human’s hidden mental state. We build data-driven models of human trust dynamics and takeover decisions, which are incorporated in the POMDP framework, using data collected from an online user study with 100 participants on the Amazon Mechanical Turk platform. We compute optimal routes for automated vehicles by solving optimal policies in the POMDP planning, and evaluate the resulting routes via human subject experiments with 22 participants on a driving simulator. The experimental results show that participants taking the trust-based route generally reported more positive responses in the after-driving survey than those taking the baseline (trust-free) route. In addition, we analyze the trade-offs between multiple planning objectives (e.g., trust, distance, energy consumption) via multi-objective optimization of the POMDP. We also identify a set of open issues and implications for real-world deployment of the proposed approach in automated vehicles
TNF-insulin crosstalk at the transcription factor GATA6 is revealed by a model that links signaling and transcriptomic data tensors
Signal transduction networks coordinate transcriptional programs activated by diverse extracellular stimuli, such as growth factors and cytokines. Cells receive multiple stimuli simultaneously, and mapping how activation of the integrated signaling network affects gene expression is a challenge. We stimulated colon adenocarcinoma cells with various combinations of the cytokine tumor necrosis factor (TNF) and the growth factors insulin and epidermal growth factor (EGF) to investigate signal integration and transcriptional crosstalk. We quantitatively linked the proteomic and transcriptomic data sets by implementing a structured computational approach called tensor partial least squares regression. This statistical model accurately predicted transcriptional signatures from signaling arising from single and combined stimuli and also predicted time-dependent contributions of signaling events. Specifically, the model predicted that an early-phase, AKT-associated signal downstream of insulin repressed a set of transcripts induced by TNF. Through bioinformatics and cell-based experiments, we identified the AKT-repressed signal as glycogen synthase kinase 3 (GSK3)-catalyzed phosphorylation of Ser37on the long form of the transcription factor GATA6. Phosphorylation of GATA6 on Ser37promoted its degradation, thereby preventing GATA6 from repressing transcripts that are induced by TNF and attenuated by insulin. Our analysis showed that predictive tensor modeling of proteomic and transcriptomic data sets can uncover pathway crosstalk that produces specific patterns of gene expression in cells receiving multiple stimuli