34 research outputs found

    Investigation of flow field characteristics and performance of carbon-hydrogen/oxygen-rich air rotating detonation engine

    Full text link
    Numerical simulations were conducted to investigate the flow field characteristics and performance of a carbon-hydrogen/oxygen-rich air rotating detonation engine (RDE). Three distinct flow field structures were observed in the gas-solid two-phase RDE. The results show that reducing the hydrogen equivalence ratio and particle diameter both contribute to the transition from gas-phase single-front detonation to gas-solid two-phase double-front detonation and further to gas-solid two-phase single-front detonation. The effects of solid fuel particle diameter and hydrogen equivalence ratio on the flow field characteristics and performance are revealed. The results show that reducing the particle diameter enhances the speed of the two-phase detonation wave, improves the pressure gain in the combustion chamber, and increases the specific impulse. Decreasing the hydrogen equivalence ratio reduces the detonation wave speed, enhances the stability of the detonation flow field, increases the pressure gain in the detonation wave and combustion chamber and boosts thrust. Furthermore, the selection of operational conditions to ensure stable operation and optimal performance of the RDE is discussed. In order to take into account the requirements of stability, pressure gain performance and propulsion performance, two-phase single-front detonation should be realized in gas-solid two-phase RDE, and smaller hydrogen equivalent ratio and appropriate particle diameter should be selected. According to the conclusion of this study, the particle diameter should be 0.5-1 {\mu}m. Under such conditions, the detonation flow field demonstrates good stability, allowing the RDE to achieve higher pressure gain and specific impulse while maintaining stable operation

    CXCR5<sup>+</sup> follicular cytotoxic T cells control viral infection in B cell follicles

    Get PDF
    During unresolved infections, some viruses escape immunological control and establish a persistant reservoir in certain cell types, such as human immunodeficiency virus (HIV), which persists in follicular helper T cells (TFH cells), and Epstein-Barr virus (EBV), which persists in B cells. Here we identified a specialized group of cytotoxic T cells (TC cells) that expressed the chemokine receptor CXCR5, selectively entered B cell follicles and eradicated infected TFH cells and B cells. The differentiation of these cells, which we have called 'follicular cytotoxic T cells' (TFC cells), required the transcription factors Bcl6, E2A and TCF-1 but was inhibited by the transcriptional regulators Blimp1, Id2 and Id3. Blimp1 and E2A directly regulated Cxcr5 expression and, together with Bcl6 and TCF-1, formed a transcriptional circuit that guided TFC cell development. The identification of TFC cells has far-reaching implications for the development of strategies to control infections that target B cells and TFH cells and to treat B cell–derived malignancies

    BYCFoam: An Improved Solver for Rotating Detonation Engines Based on OpenFOAM

    No full text
    A rotating detonation engine (RDE) is a highly promising detonation-based propulsion system and has been widely researched in recent decades. In this study, BYCFoam, the latest gaseous version of the BYRFoam family, is developed specifically for RDE simulations. It is based on the standard compressible flow solver rhoCentralFoam in OpenFOAM and incorporates several enhancements: improved reconstruction variables and flux schemes; detailed chemistry and transport properties; the utilization of an adaptive mesh refinement (AMR) and dynamic load balancing (DLB). A series of comprehensive numerical tests are conducted, including the shock-tube problem, shock-wave diffraction, homogeneous ignition delay, premixed flame, planar detonation, detonation cellular structure and rotating detonation combustor (RDC). The results demonstrate that BYCFoam can accurately and efficiently simulate the deflagration and detonation processes. This solver enhances the capability of the BYRFoam family for the in-depth exploration of RDE in future research

    Coded MIMO with asymmetric constellation sizes

    No full text
    An asymmetric constellation scheme for coded multiple-input–multiple-output (MIMO) transmission is proposed, which applies different constellation mappings to different transmit streams and carefully selects the coding rates for different transmit streams. An improved power allocation is derived to naturally incorporate with the coding rate selection and to further enhance the achievable performance. The proposed scheme provides more flexible choices of data rate selection, and by employing fixed-complexity sphere decoding (FSD) detection, it achieves better performance with reduced detection complexity in comparison with the conventional MIMO using the FSD-based detection with the same constellation set for all stream

    Significance of Epitaxial Growth of PtO<sub>2</sub> on Rutile TiO<sub>2</sub> for Pt/TiO<sub>2</sub> Catalysts

    No full text
    TiO2-supported Pt species have been widely applied in numerous critical reactions involving photo-, thermo-, and electrochemical-catalysis for decades. Manipulation of the state of the Pt species in Pt/TiO2 catalysts is crucial for fine-tuning their catalytic performance. Here, we report an interesting discovery showing the epitaxial growth of PtO2 atomic layers on rutile TiO2, potentially allowing control of the states of active Pt species in Pt/TiO2 catalysts. The presence of PtO2 atomic layers could modulate the geometric configuration and electronic state of the Pt species under reduction conditions, resulting in a spread of the particle shape and obtaining a Pt/PtO2/TiO2 structure with more positive valence of Pt species. As a result, such a catalyst exhibits exceptional electrocatalytic activity and stability toward hydrogen evolution reaction, while also promoting the thermocatalytic CO oxidation, surpassing the performance of the Pt/TiO2 catalyst with no epitaxial structure. This novel epitaxial growth of the PtO2 structure on rutile TiO2 in Pt/TiO2 catalysts shows its potential in the rational design of highly active and economical catalysts toward diverse catalytic reactions

    B-cell epitopes in GroEL of Francisella tularensis.

    No full text
    The chaperonin protein GroEL, also known as heat shock protein 60 (Hsp60), is a prominent antigen in the human and mouse antibody response to the facultative intracellular bacterium Francisella tularensis (Ft), the causative agent of tularemia. In addition to its presumed cytoplasmic location, FtGroEL has been reported to be a potential component of the bacterial surface and to be released from the bacteria. In the current study, 13 IgG2a and one IgG3 mouse monoclonal antibodies (mAbs) specific for FtGroEL were classified into eleven unique groups based on shared VH-VL germline genes, and seven crossblocking profiles revealing at least three non-overlapping epitope areas in competition ELISA. In a mouse model of respiratory tularemia with the highly pathogenic Ft type A strain SchuS4, the Ab64 and N200 IgG2a mAbs, which block each other's binding to and are sensitive to the same two point mutations in FtGroEL, reduced bacterial burden indicating that they target protective GroEL B-cell epitopes. The Ab64 and N200 epitopes, as well as those of three other mAbs with different crossblocking profiles, Ab53, N3, and N30, were mapped by hydrogen/deuterium exchange-mass spectrometry (DXMS) and visualized on a homology model of FtGroEL. This model was further supported by its experimentally-validated computational docking to the X-ray crystal structures of Ab64 and Ab53 Fabs. The structural analysis and DXMS profiles of the Ab64 and N200 mAbs suggest that their protective effects may be due to induction or stabilization of a conformational change in FtGroEL
    corecore