29 research outputs found

    In-Situ atomic level studies of Gd atom release and migration on graphene from a metallofullerene precursor

    Get PDF
    We show how Gd based metallofullerene (Gd3N@C80) molecules can be used to create single adatoms and nanoclusters on a graphene surface. An in-situ heating holder within an aberration corrected scanning transmission electron microscope is used to track the adhesion of endohedral metallofullerenes (MFs) to the surface of graphene, followed by Gd metal ejection and diffusion across the surface. Heating to 900oC is used to promote adatom migration and metal nanocluster formation, enabling direct imaging of the assembly of nanoclusters of Gd. We show that hydrogen can be used to reduce the temperature of MF fragmentation and metal ejection, enabling Gd nanocluster formation on graphene surfaces at temperatures as low as 300oC. The process of MF fragmentation and metal ejection is captured in-situ and reveals that after metal release, the C80 cage opens further and fuses with the surface monolayer carbon glass on graphene, creating a highly stable carbon layer for further Gd adatom adhesion. Small voids and defects (~1nm) in the surface carbon glass act as trapping sites for Gd atoms, leading to atomic self-assembly of 2D monolayer Gd clusters. These results show that MFs can adhere to graphene surfaces at temperatures well above their bulk sublimation point, indicating that the surface bound MFs have strong adhesion to dangling bonds on graphene surfaces. The ability to create dispersed single Gd adatoms, and Gd nanoclusters on graphene may have impact in spintronics and magnetism

    Distinguishing Lead and Molecule States in Graphene-Based Single-Electron Transistors

    Get PDF
    Graphene provides a two-dimensional platform for contacting individual molecules, which enables transport spectroscopy of molecular orbital, spin, and vibrational states. Here we report single-electron tunneling through a molecule that has been anchored to two graphene leads. Quantum interference within the graphene leads gives rise to an energy-dependent transmission and fluctuations in the sequential tunnel-rates. The lead states are electrostatically tuned by a global back-gate, resulting in a distinct pattern of varying intensity in the measured conductance maps. This pattern could potentially obscure transport features that are intrinsic to the molecule under investigation. Using ensemble averaged magneto-conductance measurements, lead and molecule states are disentangled, enabling spectroscopic investigation of the single molecule

    Invited talk - Nanoscale thermal transport and unconventional thermoelectric phenomena in 2D materials

    Get PDF
    With 2D materials such as graphene (GR) and hexagonal boron nitride possessing highest known thermal conductivities, one-atom thick nature of these materials makes thermal transport in them drastically dependent on the local environment. Moreover, the equally extraordinary electronic properties of GR such as relativistic carrier dynamics combined with GR highly anisotropic thermal conductance may point to unusual thermoelectric properties. In order to study thermal and thermoelectric phenomena in these nanoscale materials, we applied scanning thermal microscopy (SThM) that uses a sharp tip in contact with the probed surface that can create a controlled local sample temperature rise in the few nm acros spot, while measuring the resulting sample temperature and a heat flow. We used high vacuum environment that eliminates spurious heat dissipation channels to boost accuracy and sensitivity and to allow cryogenic measurements. We show that the thermal resistance of GR on SiO2 is increased by one order of magnitude by the addition of a top layer of MoS2, over the temperature range 150- 300 K with DFT calculations attributing this increase to the phonon transport filtering in the weak vdW coupling and vibrational mismatch between dissimilar 2D materials. By measuring the heat generated in the nanoscale constrictions in monolayer GR devices, we have discovered unconventional thermoelectric Peltier effect due to geometrical shape of 2D material and not requiring a junction of dissimilar materials, with phenomenon confirmed by measuring the Seebeck thermovoltage map due to local heating by the SThM tip. The novel nonlinear thermoelectric phenomena due to “electron wind”, and effects of GR doping and layer number are also reported

    Correlative multi-scale cryo-imaging unveils SARS-CoV-2 assembly and egress.

    Get PDF
    Funder: Medical Research CouncilSince the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate cytopathic events induced by SARS-CoV-2 with virus replication processes in frozen-hydrated cells, we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. Here we report critical SARS-CoV-2 structural events - e.g. viral RNA transport portals, virus assembly intermediates, virus egress pathway, and native virus spike structures, in the context of whole-cell volumes revealing drastic cytppathic changes. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules

    Field-effect control of graphene–fullerene thermoelectric nanodevices

    Get PDF
    Although it was demonstrated that discrete molecular levels determine the sign and mag nitude of the thermoelectric effect in single-molecule junctions, full electrostatic control of these levels has not been achieved to date. Here, we show that graphene nanogaps combined with gold micro-heaters serve as a testbed for studying single-molecule their moelectricity. Reduced screening of the gate electric field compared to conventional metal electrodes allows controlling the position of the dominant transport orbital by hundreds of meV. We find that the power factor of graphene-fullerene junctions can be tuned over several orders of magnitude to a value close to the theoretical limit of an isolated Breit-Wigner resonance. Furthermore our data suggests that the power factor of isolated level is only given by the tunnel coupling to the leads and temperature. These results open up new avenues for exploring thermoelectricity and charge transport in individual molecules, and highlight the importance of level-alignment and coupling to the electrodes for optimum energy-conversion in organic thermoelectric materials

    Formation and optical properties of mixed multi-layered heterostructures based on all two-dimensional materials

    No full text
    The production of large area, high quality two-dimensional (2D) materials using chemical vapour deposition (CVD) has been an important and difficult topic in contemporary materials science research, after the discovery of the diverse and extraordinary properties exhibited by these materials. This thesis mainly focuses on the CVD synthesis of two 2D materials; bilayer graphene and monolayer tungsten disulphide (WS2). Various factors influencing the growth of each material were studied in order to understand how they affect the quality, uniformity, and size of the 2D films produced. Following this, these materials were combined to fabricate 2D vertical heterostructures, which were then spectroscopically examined and characterised. By conducting ambient pressure CVD growth with a flat support, it was found that high uniform bilayer graphene could be grown on the centimetre scale. The flat support provides for the consistent delivery of precursor to the copper catalyst for graphene growth. These results provide important insights not only into the upscaling of CVD methods for growing large area, high quality graphene and but also in how to transfer the product onto flexible substrates for potential applications as a transparent conducting electrode. Monolayer WS2 is of interest for use in optoelectronic devices due to its direct bandgap and high photoluminescence (PL) intensity. This thesis shows how the controlled addition of hydrogen into the CVD growth of WS2 can lead to separately distributed domains or centimetre scale continuous monolayer films at ambient pressure without the need for seed molecules, specially prepared substrates or low pressure vacuum systems. This CVD reaction is simple and efficient, ideal for mass-production of large area monolayer WS2. Subsequent studies showed that hexagonal domains of monolayer WS2 can have discrete segmentation in their PL emission intensity, forming symmetric patterns with alternating bright and dark regions. Analysis of the PL spectra shows differences in the exciton to trion ratio, indicating variations in the exciton recombination dynamics. These results provide important insights into the spatially varying properties of these CVD-grown TMDs materials, which may be important for their effective implementation in fast photo sensors and optical switches. Finally, by introducing a novel non-aqueous transfer method, it was possible to create vertical stacks of mixed 2D layers containing a strained monolayer of WS2, boron nitride, and graphene. Stronger interactions between WS2 on graphene was found when swapping water for IPA, likely resulting from reduced contamination between the layers associated with aqueous impurities. This transfer method is suitable for layer by layer control of 2D material vertical stacks and is shown to be possible for all CVD grown samples, a result which opens up pathways for the rapid large scale fabrication of vertical heterostructure systems with large area coverage and controllable thickness on the atomic level

    Formation and optical properties of mixed multi-layered heterostructures based on all two-dimensional materials

    No full text
    The production of large area, high quality two-dimensional (2D) materials using chemical vapour deposition (CVD) has been an important and difficult topic in contemporary materials science research, after the discovery of the diverse and extraordinary properties exhibited by these materials. This thesis mainly focuses on the CVD synthesis of two 2D materials; bilayer graphene and monolayer tungsten disulphide (WS2). Various factors influencing the growth of each material were studied in order to understand how they affect the quality, uniformity, and size of the 2D films produced. Following this, these materials were combined to fabricate 2D vertical heterostructures, which were then spectroscopically examined and characterised. By conducting ambient pressure CVD growth with a flat support, it was found that high uniform bilayer graphene could be grown on the centimetre scale. The flat support provides for the consistent delivery of precursor to the copper catalyst for graphene growth. These results provide important insights not only into the upscaling of CVD methods for growing large area, high quality graphene and but also in how to transfer the product onto flexible substrates for potential applications as a transparent conducting electrode. Monolayer WS2 is of interest for use in optoelectronic devices due to its direct bandgap and high photoluminescence (PL) intensity. This thesis shows how the controlled addition of hydrogen into the CVD growth of WS2 can lead to separately distributed domains or centimetre scale continuous monolayer films at ambient pressure without the need for seed molecules, specially prepared substrates or low pressure vacuum systems. This CVD reaction is simple and efficient, ideal for mass-production of large area monolayer WS2. Subsequent studies showed that hexagonal domains of monolayer WS2 can have discrete segmentation in their PL emission intensity, forming symmetric patterns with alternating bright and dark regions. Analysis of the PL spectra shows differences in the exciton to trion ratio, indicating variations in the exciton recombination dynamics. These results provide important insights into the spatially varying properties of these CVD-grown TMDs materials, which may be important for their effective implementation in fast photo sensors and optical switches. Finally, by introducing a novel non-aqueous transfer method, it was possible to create vertical stacks of mixed 2D layers containing a strained monolayer of WS2, boron nitride, and graphene. Stronger interactions between WS2 on graphene was found when swapping water for IPA, likely resulting from reduced contamination between the layers associated with aqueous impurities. This transfer method is suitable for layer by layer control of 2D material vertical stacks and is shown to be possible for all CVD grown samples, a result which opens up pathways for the rapid large scale fabrication of vertical heterostructure systems with large area coverage and controllable thickness on the atomic level

    A Modified Flexor Tendon Suture Technique Combining Kessler and Loop Lock Flexor Tendon Sutures

    Get PDF
    OBJECTIVES: In the present study, a novel single knot tenorrhaphy was developed by combining the modified Kessler flexor tendon suture (MK) with the loop lock technique. METHODS: A total of 48 porcine flexor digitorum profundus tendons were collected and randomly divided into six groups. The tendons were transversely cut and then repaired using six different techniques, the MK method, double knot Kessler-loop lock flexor tendon suture (DK), and single knot Kessler-loop lock flexor tendon suture (SK), each in combination with the epitendinous suture (P), and the same three techniques without P. Furthermore, by performing the load-to-failure tests, the biomechanical properties and the time taken to complete a repair, for each tenorrhaphy, were assessed. RESULTS: Compared to the MK+P method, DK+P was more improved, thereby enhancing the ultimate tensile strength. The SK+P method, which required fewer knots than DK+P, was easier to perform. Moreover, the SK+P repair increased the force at a 2-mm gap formation, while requiring lesser knots than DK+P. CONCLUSION: As opposed to the traditional MK+P method, the SK+P method was improved and exhibited better biomechanical properties, which may facilitate early mobilization after the repair

    GaS:WS2 heterojunctions for ultrathin two-dimensional photodetectors with large linear dynamic range across broad wavelengths

    No full text
    Two-dimensional (2D) photodetectors based on photovoltaic effect or photogating effect can hardly achieve both high photoresponsivity and large linear dynamic range at the same time, which greatly limits many practical applications such as imaging sensors. Here, the conductive-sensitizer strategy, a general design for improving photoresponsivity and linear dynamic range in 2D photodetectors is provided and experimentally demonstrated on vertically stacked bilayer WS2/GaS0.87 under a parallel circuit mode. Owing to successful band alignment engineering, the isotype type-II heterojunction enables efficient charge carrier transfer from WS2, the high-mobility sensitizer, to GaS0.87, the low-mobility channel, under illumination from a broad visible spectrum. The transferred electron charges introduce a reverse electric field which efficiently lowers the band offset between the two materials, facilitating a transition from low-mobility photocarrier transport to high-mobility photocarrier transport with increasing illumination power. We achieved a large linear dynamic range of 73 dB as well as a high and constant photoresponsivity of 13 A/W under green light. X-ray photoelectron spectroscopy, cathodoluminescence, and Kelvin probe force microscopy further identify the key role of defects in monolayer GaS0.87 in engineering the band alignment with monolayer WS2. This work proposes a design route based on band and interface modulation for improving performance of 2D photodetectors and provides deep insights into the important role of strong interlayer coupling in offering heterostructures with desired properties and functions
    corecore