8 research outputs found

    Piezoelectric Wind Energy Harvesting from Self-Excited Vibration of Square Cylinder

    Get PDF
    Self-excited vibration of a square cylinder has been considered as an effective way in harvesting piezoelectric wind energy. In present work, both of the vortex-induced vibration and unstable galloping phenomenon process are investigated in a reduced velocity (Ur=U/ωn·D) range of 4≤Ur≤20 with load resistance ranging in 100 Ω≤R≤1 MΩ. The vortex-induced vibration covers presynchronization, synchronization, and postsynchronization branches. An aeroelectromechanical model is given to describe the coupling of the dynamic equation of the fluid-structure interaction and the equation of Gauss law. The effects of load resistance are investigated in both the open-circuit and close-circuit system by a linear analysis, which covers the parameters of the transverse displacement, aerodynamic force, output voltage, and harvested power utilized to measure the efficiency of the system. The highest level of the transverse displacement and the maximum value of harvested power of synchronization branch during the vortex-induced vibration and galloping are obtained. The results show that the large-amplitude galloping at high wind speeds can generate energy. Additionally, energy can be harvested by utilization of the lock-in phenomenon of vortex-induced vibration under low wind speed

    Pore structure and splitting tensile strength of hybrid Basalt–Polypropylene fiber reinforced concrete subjected to carbonation

    No full text
    10.1016/j.conbuildmat.2021.123779Construction and Building Materials297123779-123779complete

    Fate mapping analysis reveals a novel murine dermal migratory Langerhans-like cell population

    No full text
    Dendritic cells residing in the skin represent a large family of antigen-presenting cells, ranging from long-lived Langerhans cells (LC) in the epidermis to various distinct classical dendritic cell subsets in the dermis. Through genetic fate mapping analysis and single-cell RNA-sequencing, we have identified a novel separate population of LC-independent CD207⁺CD326⁺ LClike cells in the dermis that homed at a slow rate to the lymph nodes (LNs). These LClike cells are long-lived and radio-resistant but, unlike LCs, they are gradually replenished by bone marrow-derived precursors under steady state. LClike cells together with cDC1s are the main migratory CD207⁺CD326⁺ cell fractions present in the LN and not, as currently assumed, LCs, which are barely detectable, if at all. Cutaneous tolerance to haptens depends on LClike cells, whereas LCs suppress effector CD8⁺ T-cell functions and inflammation locally in the skin during contact hypersensitivity. These findings bring new insights into the dynamism of cutaneous dendritic cells and their function opening novel avenues in the development of treatments to cure inflammatory skin disorders.Ministry of Education (MOE)Published versionThe authors would like to thank Monika Tetlak for mouse management, Su I-hsin and Lim Jun Feng Thomas, for technical advice and Insight Editing London for proofreading the manuscript prior to submission. This work was supported by Ministry of Education Tier1 grant awarded to CR and by the National Key R and D Program of China (Grant 2019YFA0803000) assigned to JS. Work at the MIMR was supported by an Independent Research Organisation Work at the MIMR was supported by a Health Research Council of New Zealand Independent Research Organisation grant to the Malaghan Institute of Medical Research awarded to the Malaghan Institute of Medical Research from the Health Research Council of New Zealand

    Multi-omics analysis reveals the chemoresistance mechanism of proliferating tissue-resident macrophages in PDAC via metabolic adaptation

    No full text
    Summary: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically demonstrates resistance to chemotherapy. Tumor-associated macrophages (TAMs) are essential in tumor microenvironment (TME) regulation, including promoting chemoresistance. However, the specific TAM subset and mechanisms behind this promotion remain unclear. We employ multi-omics strategies, including single-cell RNA sequencing (scRNA-seq), transcriptomics, multicolor immunohistochemistry (mIHC), flow cytometry, and metabolomics, to analyze chemotherapy-treated samples from both humans and mice. We identify four major TAM subsets within PDAC, among which proliferating resident macrophages (proliferating rMφs) are strongly associated with poor clinical outcomes. These macrophages are able to survive chemotherapy by producing more deoxycytidine (dC) and fewer dC kinases (dCKs) to decrease the absorption of gemcitabine. Moreover, proliferating rMφs promote fibrosis and immunosuppression in PDAC. Eliminating them in the transgenic mouse model alleviates fibrosis and immunosuppression, thereby re-sensitizing PDAC to chemotherapy. Consequently, targeting proliferating rMφs may become a potential treatment strategy for PDAC to enhance chemotherapy

    Monocytes reprogrammed by tumor microparticle vaccine inhibit tumorigenesis and tumor development

    No full text
    Abstract Tumor microparticles (T-MPs) are considered as a tumor vaccine candidate. Although some studies have analyzed the mechanism of T-MPs as tumor vaccine, we still lack understanding of how T-MPs stimulate a strong anti-tumor immune response. Here, we show that T-MPs induce macrophages to release a key chemotactic factor CCL2, which attracts monocytes to the vaccine injection site and enhances endocytosis of antigen. Monocytes subsequently enter the draining lymph node, and differentiate into monocyte-derived DCs (moDCs), which present tumor antigens to T lymphocytes and deliver a potent anti-tumor immune response. Mechanically, T-MPs activate the cGAS-STING signaling through DNA fragments, and then induce monocytes to upregulate the expression of IRF4, which is a key factor for monocyte differentiation into moDCs. More importantly, monocytes that have endocytosed T-MPs acquire the ability to treat tumors. Collectively, this work might provide novel vaccination strategy for the development of tumor vaccines and facilitate the application of T-MPs for clinic oncotherapy

    Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis

    No full text
    Abstract Ulcerative colitis is a chronic inflammatory bowel disorder with cellular heterogeneity. To understand the composition and spatial changes of the ulcerative colitis ecosystem, here we use imaging mass cytometry and single-cell RNA sequencing to depict the single-cell landscape of the human colon ecosystem. We find tissue topological changes featured with macrophage disappearance reaction in the ulcerative colitis region, occurring only for tissue-resident macrophages. Reactive oxygen species levels are higher in the ulcerative colitis region, but reactive oxygen species scavenging enzyme SOD2 is barely detected in resident macrophages, resulting in distinct reactive oxygen species vulnerability for inflammatory macrophages and resident macrophages. Inflammatory macrophages replace resident macrophages and cause a spatial shift of TNF production during ulcerative colitis via a cytokine production network formed with T and B cells. Our study suggests components of a mechanism for the observed macrophage disappearance reaction of resident macrophages, providing mechanistic hints for macrophage disappearance reaction in other inflammation or infection situations

    Additional file 1 of Monocytes reprogrammed by tumor microparticle vaccine inhibit tumorigenesis and tumor development

    No full text
    Additional file 1: Fig. S1. Intramuscular injection of B16-MPs inhibited tumorigenesis of B16-F10 melanoma. Fig. S2. Intramuscular inoculation of MPs from CT26 colon carcinoma cells rather than those from H22 hepatocarcinoma cells led to prevention of CT26 tumor growth. Fig. S3. T-MPs as a tumor vaccine presented a good safety. Fig. S4. B lymphocytes and T lymphocytes in BALB/c mice don't endocytose T-MPs. Fig. S5. T-MPs are mainly endocytosed by monocytes and macrophages in C57BL/6 mice. Fig. S6. T-MPs treatment doesn't cause the proliferation of moDCs in the dLN. Fig. S7. DNAs and RNAs were isolated from T-MPs
    corecore