29 research outputs found

    Satellite observations of atmospheric methane and their value for quantifying methane emissions

    Get PDF
    Methane is a greenhouse gas emitted by a range of natural and anthropogenic sources. Atmospheric methane has been measured continuously from space since 2003, and new instruments are planned for launch in the near future that will greatly expand the capabilities of space-based observations. We review the value of current, future, and proposed satellite observations to better quantify and understand methane emissions through inverse analyses, from the global scale down to the scale of point sources and in combination with suborbital (surface and aircraft) data. Current global observations from Greenhouse Gases Observing Satellite (GOSAT) are of high quality but have sparse spatial coverage. They can quantify methane emissions on a regional scale (100–1000 km) through multiyear averaging. The Tropospheric Monitoring Instrument (TROPOMI), to be launched in 2017, is expected to quantify daily emissions on the regional scale and will also effectively detect large point sources. A different observing strategy by GHGSat (launched in June 2016) is to target limited viewing domains with very fine pixel resolution in order to detect a wide range of methane point sources. Geostationary observation of methane, still in the proposal stage, will have the unique capability of mapping source regions with high resolution, detecting transient "super-emitter" point sources and resolving diurnal variation of emissions from sources such as wetlands and manure. Exploiting these rapidly expanding satellite measurement capabilities to quantify methane emissions requires a parallel effort to construct high-quality spatially and sectorally resolved emission inventories. Partnership between top-down inverse analyses of atmospheric data and bottom-up construction of emission inventories is crucial to better understanding methane emission processes and subsequently informing climate policy

    Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area

    Get PDF
    China’s anthropogenic methane emissions are the largest of any country in the world. A recent study using atmospheric observations suggested that recent policies aimed at reducing emissions of methane due to coal production in China after 2010 had been largely ineffective. Here, based on a longer observational record and an updated modelling approach, we find a statistically significant positive linear trend (0.36 ± 0.04 ( ±1σ\pm1\sigma ) Tg CH _4 yr ^−2 ) in China’s methane emissions for 2010–2017. This trend was slowing down at a statistically significant rate of -0.1 ± 0.04 Tg CH _4 yr ^−3 . We find that this decrease in growth rate can in part be attributed to a decline in China’s coal production. However, coal mine methane emissions have not declined as rapidly as production, implying that there may be substantial fugitive emissions from abandoned coal mines that have previously been overlooked. We also find that emissions over rice-growing and aquaculture-farming regions show a positive trend (0.13 ± 0.05 Tg CH _4 yr ^−2 for 2010–2017) despite reports of shrinking rice paddy areas, implying potentially significant emissions from new aquaculture activities, which are thought to be primarily located on converted rice paddies

    Characterization, Antioxidant and Anti-Inflammation Capacities of Fermented Flammulina velutipes Polyphenols

    No full text
    This work investigated the preparation, characterization, antioxidant, and anti-inflammation capacities of Flammulina velutipes polyphenols (FVP) and fermented FVP (FFVP). The results revealed that the new syringic acid, accounting for 22.22%, was obtained after fermentation (FFVP). FFVP exhibits higher antioxidant and anti-inflammation activities than FVP, enhancing cell viability and phagocytosis, inhibiting the secretion of NO and ROS, and reducing the inflammatory response of RAW264.7 cells. This study revealed that FFVP provides a theoretical reference for in-depth study of its regulatory mechanisms and further development of functional antioxidants that are applicable in the food and health industry

    Bottom-up estimates of coal mine methane emissions in China: a gridded inventory, emission factors, and trends

    No full text
    China has large but uncertain coal mine methane (CMM) emissions. Inverse modeling (top-down) analyses of atmospheric methane observations can help improve the emission estimates but require reliable emission patterns as prior information. To serve this urgent need, we developed a high-resolution (0.25° × 0.25°) methane emission inventory for China’s coal mining using a recent publicly available database of more than 10000 coal mines in China for 2011. This number of coal mines is 25 and 2.5 times, respectively, more than the number available in the EDGAR v4.2 and EDGAR v4.3.2 gridded global inventories, which have been extensively used in past inverse analyses. Our inventory shows large differences with the EDGAR v4.2 as well as its more recent version, EDGAR v4.3.2. Our results suggest that China’s CMM emissions have been decreasing since 2012 on the basis of coal mining activities and assuming time-invariant emission factors but that regional trends differ greatly. Use of our inventory as prior information in future inverse modeling analyses can help better quantify CMM emissions as well as more confidently guide the future mitigation of coal to gas in China.JRC.D.6-Knowledge for Sustainable Development and Food Securit

    Bottom-Up Estimates of Coal Mine Methane Emissions in China: A Gridded Inventory, Emission Factors, and Trends

    No full text
    China has large but uncertain coal mine methane (CMM) emissions. Inverse modeling (top-down) analyses of atmospheric methane observations can help improve the emission estimates but require reliable emission patterns as prior information. To serve this urgent need, we developed a high-resolution (0.25° × 0.25°) methane emission inventory for China's coal mining using a recent publicly available database of more than 10000 coal mines in China for 2011. This number of coal mines is 25 and 2.5 times, respectively, more than the number available in the EDGAR v4.2 and EDGAR v4.3.2 gridded global inventories, which have been extensively used in past inverse analyses. Our inventory shows large differences with the EDGAR v4.2 as well as its more recent version, EDGAR v4.3.2. Our results suggest that China's CMM emissions have been decreasing since 2012 on the basis of coal mining activities and assuming time-invariant emission factors but that regional trends differ greatly. Use of our inventory as prior information in future inverse modeling analyses can help better quantify CMM emissions as well as more confidently guide the future mitigation of coal to gas in China.NASA (Grant NNX16AC98G

    Microbe-Derived Antioxidants Alleviate Liver and Adipose Tissue Lipid Disorders and Metabolic Inflammation Induced by High Fat Diet in Mice

    No full text
    Obesity induces lipodystrophy and metabolic inflammation. Microbe-derived antioxidants (MA) are novel small-molecule nutrients obtained from microbial fermentation, and have anti-oxidation, lipid-lowering and anti-inflammatory effects. Whether MA can regulate obesity-induced lipodystrophy and metabolic inflammation has not yet been investigated. The aim of this study was to investigate the effects of MA on oxidative stress, lipid disorders, and metabolic inflammation in liver and epididymal adipose tissues (EAT) of mice fed with a high-fat diet (HFD). Results showed that MA was able to reverse the HFD-induced increase in body weight, body fat rate and Lee’s index in mice; reduce the fat content in serum, liver and EAT; and regulate the INS, LEP and resistin adipokines as well as free fatty acids to their normal levels. MA also reduced de novo synthesis of fat in the liver and EAT and promoted gene expression for lipolysis, fatty acid transport and β-oxidation. MA decreased TNF-α and MCP1 content in serum, elevated SOD activity in liver and EAT, induced macrophage polarization toward the M2 type, inhibited the NLRP3 pathway, increased gene expression of the anti-inflammatory factors IL-4 and IL-13 and suppressed gene expression of the pro-inflammatory factors IL-6, TNF-α and MCP1, thereby attenuating oxidative stress and inflammation induced by HFD. In conclusion, MA can effectively reduce HFD-induced weight gain and alleviate obesity-induced oxidative stress, lipid disorders and metabolic inflammation in the liver and EAT, indicating that MA shows great promise as a functional food
    corecore