836 research outputs found
Microcystic cyanobacteria causes mitochondrial membrane potential alteration and reactive oxygen species formation in primary cultured rat hepatocytes.
Cyanobacteria contamination of water has become a growing public health problem worldwide. Microcystis aeruginosa is one of the most common toxic cyanobacteria. It is capable of producing microcystins, a group of cyclic heptapeptide compounds with potent hepatotoxicity and tumor promotion activity. The present study investigated the effect of microcystic cyanobacteria on primary cultured rat hepatocytes by examining mitochondrial membrane potential (MMP) changes and intracellular reactive oxygen species (ROS) formation in cells treated with lyophilized freshwater microcystic cyanobacteria extract (MCE). Rhodamine 123 (Rh-123) was used as a fluorescent probe for changes in mitochondrial fluorescence intensity. The mitochondrial Rh-123 fluorescence intensity in MCE-treated hepatocytes, examined using a laser confocal microscope, responded in a dose- and time-dependent manner. The results thus indicate that the alteration of MMP might be an important event in the hepatotoxicity caused by cyanobacteria. Moreover, the parallel increase of ROS formation detected using another fluorescent probe, 2',7'-dichlorofluorescin diacetate also suggests the involvement of oxidative stress in the hepatotoxicity caused by cyanobacteria. The fact that MMP changes precede other cytotoxic parameters such as nuclear staining by propidium iodide and cell morphological changes suggests that mitochondrial damage is closely associated with MCE-induced cell injury in cultured rat hepatocytes
Two-dimensional single-valley exciton qubit and optical spin magnetization generation
Creating and manipulating coherent qubit states are actively pursued in
two-dimensional (2D) materials research. Significant efforts have been made
towards the realization of two-valley exciton qubits in monolayer
transition-metal dichalcogenides (TMDs), based on states from their two
distinct valleys in k-space. Here, we propose a new scheme to create qubits in
2D materials utilizing a novel kind of degenerate exciton states in a single
valley. Combining group theoretic analysis and ab initio GW plus Bethe-Salpeter
equation (GW-BSE) calculations, we demonstrate such novel qubit states in
substrate-supported monolayer bismuthene -- which has been successfully grown
using molecular beam epitaxy. In each of the two distinct valleys in the
Brillouin zone, strong spin-orbit coupling along with symmetry leads
to a pair of degenerate 1s exciton states with opposite spin configurations.
Specific coherent linear combinations of the two degenerate excitons in a
single valley can be excited with specific light polarizations, enabling full
manipulation of the exciton qubits and their spin configurations. In
particular, a net spin magnetization can be generated. Our finding opens new
routes to create and manipulate qubit systems in 2D materials.Comment: 27 pages, 5 figure
Ab initio study of hot electrons in GaAs
Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron–phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron–phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron–phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials
Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells).
Epidemiological evidence suggests that cadmium (Cd) exposure causes pulmonary damage such as emphysema and lung cancer. However, relatively little is known about the mechanisms involved in Cd pulmonary toxicity. In the present study, the effects of Cd exposure on human fetal lung fibroblasts (MRC-5 cells) were evaluated by determination of lipid peroxidation, intra-cellular production of reactive oxygen species (ROS), and changes of mitochondrial membrane potential. A time- and dose-dependent increase of both lactate dehydrogenase leakage and malondialdehyde formation was observed in Cd-treated cells. A close correlation between these two events suggests that lipid peroxidation may be one of the main pathways causing its cytotoxicity. It was also noted that Cd-induced cell injury and lipid peroxidation were inhibited by catalase and superoxide dismutase, two antioxidant enzymes. By using the fluorescent probe 2',7'-dichlorofluorescin diacetate, a significant increase of ROS production in Cd-treated MRC-5 cells was detected. The inhibition of dichlorofluorescein fluorescence by catalase, not superoxide dismutase, suggests that hydrogen peroxide is the main ROS involved. Moreover, the significant dose-dependent changes of mitochondrial membrane potential in Cd-treated MRC-5 cells, demonstrated by increased fluorescence of rhodamine 123 examined using a laser-scanning confocal microscope, also indicate the involvement of mitochondrial damage in Cd cytotoxicity. These findings provide in vitro evidence that Cd causes oxidative cellular damage in human fetal lung fibroblasts, which may be closely associated with the pulmonary toxicity of Cd
Amplification of evanescent waves in a lossy left-handed material slab
We carry out finite-difference time-domain (FDTD) simulations, with a
specially-designed boundary condition, on pure evanescent waves interacting
with a lossy left-handed material (LHM) slab. Our results provide the first
full-wave numerical evidence for the amplification of evanescent waves inside a
LHM slab of finite absorption. The amplification is due to the interactions
between the evanescent waves and the coupled surface polaritons at the two
surfaces of the LHM slab and the physical process can be described by a simple
model.Comment: 4 pages, 2 figure
Valley-dependent Exciton Fine Structure and Autler-Townes Doublets from Berry Phases in Monolayer Molybdenum Diselenide
The Berry phase of Bloch states can have profound effects on electron
dynamics lead to novel transport phenomena, such as the anomalous Hall effect
and the valley Hall effect. Recently, it was predicted that the Berry phase
effect can also modify the exciton states in transition metal dichalcogenide
monolayers, and lift the energy degeneracy of exciton states with opposite
angular momentum through an effective valley-orbital coupling. Here, we report
the first observation and control of the Berry-phase induced splitting of the
2p-exciton states in monolayer molybdenum diselenide using the intraexciton
optical Stark spectroscopy. We observe the time-reversal-symmetric analog of
the orbital Zeeman effect resulting from the valley-dependent Berry phase,
which leads to energy difference of +14 (-14) meV between the and
exciton states in +K (-K) valley, consistent with the ordering from our ab
initio GW-BSE results. In addition, we show that the light-matter coupling
between intraexciton states are remarkably strong, leading to prominent
valley-dependent Autler-Townes doublet under resonant driving. Our study opens
up new pathways to coherently manipulate the quantum states and excitonic
excitation with infrared radiation in two-dimensional semiconductors
Exploiting physico-chemical properties in string kernels
<p>Abstract</p> <p>Background</p> <p>String kernels are commonly used for the classification of biological sequences, nucleotide as well as amino acid sequences. Although string kernels are already very powerful, when it comes to amino acids they have a major short coming. They ignore an important piece of information when comparing amino acids: the physico-chemical properties such as size, hydrophobicity, or charge. This information is very valuable, especially when training data is less abundant. There have been only very few approaches so far that aim at combining these two ideas.</p> <p>Results</p> <p>We propose new string kernels that combine the benefits of physico-chemical descriptors for amino acids with the ones of string kernels. The benefits of the proposed kernels are assessed on two problems: MHC-peptide binding classification using position specific kernels and protein classification based on the substring spectrum of the sequences. Our experiments demonstrate that the incorporation of amino acid properties in string kernels yields improved performances compared to standard string kernels and to previously proposed non-substring kernels.</p> <p>Conclusions</p> <p>In summary, the proposed modifications, in particular the combination with the RBF substring kernel, consistently yield improvements without affecting the computational complexity. The proposed kernels therefore appear to be the kernels of choice for any protein sequence-based inference.</p> <p>Availability</p> <p>Data sets, code and additional information are available from <url>http://www.fml.tuebingen.mpg.de/raetsch/suppl/aask</url>. Implementations of the developed kernels are available as part of the Shogun toolbox.</p
Quantum Orders and Symmetric Spin Liquids
A concept -- quantum order -- is introduced to describe a new kind of orders
that generally appear in quantum states at zero temperature. Quantum orders
that characterize universality classes of quantum states (described by {\em
complex} ground state wave-functions) is much richer then classical orders that
characterize universality classes of finite temperature classical states
(described by {\em positive} probability distribution functions). The Landau's
theory for orders and phase transitions does not apply to quantum orders since
they cannot be described by broken symmetries and the associated order
parameters. We find projective representations of symmetry groups (which will
be called projective symmetry groups) can be used to characterize quantum
orders. With the help of quantum orders and the projective symmetry groups, we
construct hundreds of symmetric spin liquids, which have SU(2), U(1) or
gauge structures at low energies. Remarkably, some of the stable quantum phases
support gapless excitations even without any spontaneous symmetry breaking. We
propose that it is the quantum orders (instead of symmetries) that protect the
gapless excitations and make algebraic spin liquids and Fermi spin liquids
stable. Since high superconductors are likely to be described by a
gapless spin liquid, the quantum orders and their projective symmetry group
descriptions lay the foundation for spin liquid approach to high
superconductors.Comment: 58 pages, RevTeX4 home page: http://dao.mit.edu/~we
Milagrito: a TeV air-shower array
Milagrito, a large, covered water-Cherenkov detector, was the world's first
air-shower-particle detector sensitive to cosmic gamma rays below 1 TeV. It
served as a prototype for the Milagro detector and operated from February 1997
to May 1998. This paper gives a description of Milagrito, a summary of the
operating experience, and early results that demonstrate the capabilities of
this technique.Comment: 38 pages including 24 figure
- …