543 research outputs found

    IFN-gamma is associated with risk of Schistosoma japonicum infection in China.

    No full text
    Before the start of the schistosomiasis transmission season, 129 villagers resident on a Schistosoma japonicum-endemic island in Poyang Lake, Jiangxi Province, 64 of whom were stool-positive for S. japonicum eggs by the Kato method and 65 negative, were treated with praziquantel. Forty-five days later the 93 subjects who presented for follow-up were all stool-negative. Blood samples were collected from all 93 individuals. S. japonicum soluble worm antigen (SWAP) and soluble egg antigen (SEA) stimulated IL-4, IL-5 and IFN-gamma production in whole-blood cultures were measured by ELISA. All the subjects were interviewed nine times during the subsequent transmission season to estimate the intensity of their contact with potentially infective snail habitats, and the subjects were all re-screened for S. japonicum by the Kato method at the end of the transmission season. Fourteen subjects were found to be infected at that time. There was some indication that the risk of infection might be associated with gender (with females being at higher risk) and with the intensity of water contact, and there was evidence that levels of SEA-induced IFN-gamma production were associated with reduced risk of infection

    The low velocity impact response of curvilinear-core sandwich structures

    Get PDF
    The low velocity impact response of lightweight aluminium sandwich panels, based on a curvilinear aluminium alloy core, has been investigated to evaluate their energy-absorbing characteristics and to identify the associated failure mechanisms. Finite element models are then developed to predict the dynamic response of these lightweight structures. Here, an elasto-plastic model, capable of accounting for strain-hardening effects, material rate-dependence, as well as the relevant damage criteria, was employed to predict the dynamic response of the targets. The finite element models were then validated by comparing their predictions against the corresponding experimental results. Good agreement was obtained, indicating that the models are capable of predicting the dynamic behaviour of these all-metal sandwich structures under low velocity impact conditions. Once the finite element model had been validated, it was used to assess the effect of varying key test parameters, such as the projectile diameter, the material properties of the metal substrate as well as the angle of obliquity on the impact response. Here, it has been shown that the perforation energy increases as the impact angle is increased and also as the projectile diameter increases. An investigation of seven different all-metal sandwich structures has shown that an aluminium alloy offers the highest specific perforation resistance under conditions of low velocity impact loading

    Hydrothermally Grown ZnO Micro/Nanotube Arrays and Their Properties

    Get PDF
    We reported the optical and wettability properties of aligned zinc oxide micro/nanotube arrays, which were synthesized on zinc foil via a simple hydrothermal method. As-synthesized ZnO micro/nanotubes have uniform growth directions along the [0001] orientations with diameters in the range of 100–700 nm. These micro/nanotubes showed a strong emission peak at 387 nm and two weak emission peaks at 422 and 485 nm, respectively, and have the hydrophobic properties with a contact angle of 121°. Single ZnO micro/nanotube-based field-effect transistor was also fabricated, which shows typical n-type semiconducting behavior

    One-Dimensional Nanostructures and Devices of II–V Group Semiconductors

    Get PDF
    The II–V group semiconductors, with narrow band gaps, are important materials with many applications in infrared detectors, lasers, solar cells, ultrasonic multipliers, and Hall generators. Since the first report on trumpet-like Zn3P2nanowires, one-dimensional (1-D) nanostructures of II–V group semiconductors have attracted great research attention recently because these special 1-D nanostructures may find applications in fabricating new electronic and optoelectronic nanoscale devices. This article covers the 1-D II–V semiconducting nanostructures that have been synthesized till now, focusing on nanotubes, nanowires, nanobelts, and special nanostructures like heterostructured nanowires. Novel electronic and optoelectronic devices built on 1-D II–V semiconducting nanostructures will also be discussed, which include metal–insulator-semiconductor field-effect transistors, metal-semiconductor field-effect transistors, andp–nheterojunction photodiode. We intent to provide the readers a brief account of these exciting research activities

    Clonal Immune Responses of Mycobacterium-Specific γδ T Cells in Tuberculous and Non-Tuberculous Tissues during M. tuberculosis Infection

    Get PDF
    BACKGROUND: We previously demonstrated that unvaccinated macaques infected with large-dose M.tuberculosis(Mtb) exhibited delays for pulmonary trafficking of Ag-specific αβ and γδ T effector cells, and developed severe lung tuberculosis(TB) and "secondary" Mtb infection in remote organs such as liver and kidney. Despite delays in lungs, local immunity in remote organs may accumulate since progressive immune activation after pulmonary Mtb infection may allow IFNγ-producing γδ T cells to adequately develop and traffic to lately-infected remote organs. As initial efforts to test this hypothesis, we comparatively examined TCR repertoire/clonality, tissue trafficking and effector function of Vγ2Vδ2 T cells in lung with severe TB and in liver/kidney without apparent TB. METHODOLOGY/PRINCIPAL FINDINGS: We utilized conventional infection-immunity approaches in macaque TB model, and employed our decades-long expertise for TCR repertoire analyses. TCR repertoires in Vγ2Vδ2 T-cell subpopulation were broad during primary Mtb infection as most TCR clones found in lymphoid system, lung, kidney and liver were distinct. Polyclonally-expanded Vγ2Vδ2 T-cell clones from lymphoid tissues appeared to distribute and localize in lung TB granuloms at the endpoint after Mtb infection by aerosol. Interestingly, some TCR clones appeared to be more predominant than others in lymphocytes from liver or kidney without apparent TB lesions. TCR CDR3 spetratyping revealed such clonal dominance, and the clonal dominance of expanded Vγ2Vδ2 T cells in kidney/liver tissues was associated with undetectable or low-level TB burdens. Furthermore, Vγ2Vδ2 T cells from tissue compartments could mount effector function for producing anti-mycobacterium cytokine. CONCLUSION: We were the first to demonstrate clonal immune responses of mycobacterium-specific Vγ2Vδ2 T cells in the lymphoid system, heavily-infected lungs and lately subtly-infected kidneys or livers during primary Mtb infection. While clonally-expanded Vγ2Vδ2 T cells accumulated in lately-infected kidneys/livers without apparent TB lesions, TB burdens or lesions appeared to impact TCR repertoires and tissue trafficking patterns of activated Vγ2Vδ2 T cells

    Movement disorder and neuronal migration disorder due to ARFGEF2 mutation

    Get PDF
    We report a child with a severe choreadystonic movement disorder, bilateral periventricular nodular heterotopia (BPNH), and secondary microcephaly based on compound heterozygosity for two new ARFGEF2 mutations (c.2031_2038dup and c.3798_3802del), changing the limited knowledge about the phenotype. The brain MRI shows bilateral hyperintensity of the putamen, BPNH, and generalized atrophy. Loss of ARFGEF2 function affects vesicle trafficking, proliferation/apoptosis, and neurotransmitter receptor function. This can explain BPNH and microcephaly. We hypothesize that the movement disorder and the preferential damage to the basal ganglia, specifically to the putamen, may be caused by an increased sensitivity to degeneration, a dynamic dysfunction due to neurotransmitter receptor mislocalization or a combination of both

    State-space Manifold and Rotating Black Holes

    Full text link
    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ MM-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric AdS5AdS_5 black holes, D1D_1-D5D_5 configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scaling property suggest that the brane-brane statistical pair correlation functions divulge an asymmetric nature, in comparison with the others. This approach indicates that all above configurations are effectively attractive and stable, on an arbitrary hyper-surface of the state-space manifolds. It is nevertheless noticed that there exists an intriguing relationship between non-ideal inter-brane statistical interactions and phase transitions. The ramifications thus described are consistent with the existing picture of the microscopic CFTs. We conclude with an extended discussion of the implications of this work for the physics of black holes in string theory.Comment: 44 pages, Keywords: Rotating Black Holes; State-space Geometry; Statistical Configurations, String Theory, M-Theory. PACS numbers: 04.70.-s Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamics; 04.50.Gh Higher-dimensional black holes, black strings, and related objects. Edited the bibliograph

    DR*W201/P65 Tetramer Visualization of Epitope-Specific CD4 T-Cell during M. tuberculosis Infection and Its Resting Memory Pool after BCG Vaccination

    Get PDF
    In vivo kinetics and frequencies of epitope-specific CD4 T cells in lymphoid compartments during M. tuberculosis infection and their resting memory pool after BCG vaccination remain unknown.Macaque DR*W201 tetramer loaded with Ag85B peptide 65 was developed to directly measure epitope-specific CD4 T cells in blood and tissues form macaques after M. tuberculosis infection or BCG vaccination via direct staining and tetramer-enriched approach. The tetramer-based enrichment approach showed that P65 epitope-specific CD4 T cells emerged at mean frequencies of approximately 500 and approximately 4500 per 10(7) PBL at days 28 and 42, respectively, and at day 63 increased further to approximately 22,000/10(7) PBL after M. tuberculosis infection. Direct tetramer staining showed that the tetramer-bound P65-specific T cells constituted about 0.2-0.3% of CD4 T cells in PBL, lymph nodes, spleens, and lungs at day 63 post-infection. 10-fold expansion of these tetramer-bound epitope-specific CD4 T cells was seen after the P65 peptide stimulation of PBL and tissue lymphocytes. The tetramer-based enrichment approach detected BCG-elicited resting memory P65-specific CD4 T cells at a mean frequency of 2,700 per 10(7) PBL.Our work represents the first elucidation of in vivo kinetics and frequencies for tetramer-bound epitope-specific CD4 T cells in the blood, lymphoid tissues and lungs over times after M. tuberculosis infection, and BCG immunization

    The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets.

    Get PDF
    yesTraditional rotor dynamics mainly focuses on the steady- state behavior of the rotor and shafting. However, for systems such as hydro turbine generating sets (HTGS) where the control and regulation is frequently applied, the shafting safety and stabilization in transient state is then a key factor. The shafting transient state inevitably involves multiparameter domain, multifield coupling, and coupling dynamics. In this paper, the relative value form of the Lagrange function and its equations have been established by defining the base value system of the shafting. Takingthe rotation angle and the angular speed of the shafting as a link, the shafting lateral vibration and generator equations are integrated into the framework of generalized Hamiltonian system. The generalized Hamiltonian control model is thus established. To make the model more general, additional forces of the shafting are taken as the input excitation in proposed model. The control system of the HTGS can be easily connected with the shafting model to form the whole simulation system of the HTGS. It is expected that this study will build a foundation for the coupling dynamics theory using the generalized Hamiltonian theory to investigate coupling dynamic mechanism among the shafting vibration, transient of hydro turbine generating sets, and additional forces of the shafting.National Natural Science Foundation of China under Grant Nos. 51179079 and 5083900

    Expression of lysophosphatidic acid acyltransferase beta (LPAAT-β) in ovarian carcinoma: correlation with tumour grading and prognosis

    Get PDF
    Lysophosphatidic acid acyltransferase beta (LPAAT-β) is an enzyme involved in lipid biosynthesis whose role in tumour progression has been of emerging interest in the last few years. We investigated the expression of LPAAT-β by reverse transcriptase–polymerase chain reaction and immunohistochemistry in 10 ovarian cell lines as well as in a cohort of 106 ovarian tumours and normal ovaries. Lysophosphatidic acid acyltransferase beta mRNA was found in all cell lines and ovarian tumours examined. Expression of LPAAT-β protein was significantly increased in ovarian carcinomas compared to benign ovarian tissue (χ2 test P-value=0.001, Kruskal–Wallis test P-value <0.0001). Furthermore, LPAAT-β expression was positively associated with higher tumour grade (P=0.044), higher mitotic index (P<0.0001) and tumour stage (P=0.032). Expression of LPAAT-β was significantly linked to reduced overall survival time (P=0.024) as well as to shorter progression-free survival time (P=0.012) in patients younger than 60 years. Our study shows that LPAAT-β is upregulated in ovarian cancer and is more prevalent in poorly differentiated tumours. In addition, LPAAT-β expression is a predictor of a worse prognosis in patients younger than 60 years. Further studies are needed to investigate if LPAAT-β may serve as a therapeutic target for certain subgroups of patients
    corecore