31,493 research outputs found

    Bounded H∞ synchronization and state estimation for discrete time-varying stochastic complex for discrete time-varying stochastic complex networks over a finite horizon

    Get PDF
    Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, new synchronization and state estimation problems are considered for an array of coupled discrete time-varying stochastic complex networks over a finite horizon. A novel concept of bounded H∞ synchronization is proposed to handle the time-varying nature of the complex networks. Such a concept captures the transient behavior of the time-varying complex network over a finite horizon, where the degree of bounded synchronization is quantified in terms of the H∞-norm. A general sector-like nonlinear function is employed to describe the nonlinearities existing in the network. By utilizing a timevarying real-valued function and the Kronecker product, criteria are established that ensure the bounded H∞ synchronization in terms of a set of recursive linear matrix inequalities (RLMIs), where the RLMIs can be computed recursively by employing available MATLAB toolboxes. The bounded H∞ state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, over a finite horizon, the dynamics of the estimation error is guaranteed to be bounded with a given disturbance attenuation level. Again, an RLMI approach is developed for the state estimation problem. Finally, two simulation examples are exploited to show the effectiveness of the results derived in this paper.This work was supported in part by the Engineering and Physical Sciences Research Council of U.K. under Grant GR/S27658/01, the National Natural Science Foundation of China under Grant 61028008 and Grant 60974030, the National 973 Program of China under Grant 2009CB320600, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany

    Sampled-data synchronization control of dynamical networks with stochastic sampling

    Get PDF
    Copyright @ 2012 IEEEThis technical note is concerned with the sampled-data synchronization control problem for a class of dynamical networks. The sampling period considered here is assumed to be time-varying that switches between two different values in a random way with given probability. The addressed synchronization control problem is first formulated as an exponentially mean-square stabilization problem for a new class of dynamical networks that involve both the multiple probabilistic interval delays (MPIDs) and the sector-bounded nonlinearities (SBNs). Then, a novel Lyapunov functional is constructed to obtain sufficient conditions under which the dynamical network is exponentially mean-square stable. Both Gronwall's inequality and Jenson integral inequality are utilized to substantially simplify the derivation of the main results. Subsequently, a set of sampled-data synchronization controllers is designed in terms of the solution to certain matrix inequalities that can be solved effectively by using available software. Finally, a numerical simulation example is employed to show the effectiveness of the proposed sampled-data synchronization control scheme.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61028008, 60974030, 61134009 and 61104125, the National 973 Program of China under Grant 2009CB320600, and the Alexander von Humboldt Foundation of Germany

    Light Fan Driven by a Relativistic Laser Pulse

    Get PDF
    When a relativistic laser pulse with a high photon density interacts with a specially tailored thin foil target, a strong torque is exerted on the resulting spiral-shaped foil plasma, or “light fan.” Because of its structure, the latter can gain significant orbital angular momentum (OAM), and the opposite OAM is imparted to the reflected light, creating a twisted relativistic light pulse. Such an interaction scenario is demonstrated by particle-in-cell simulation as well as analytical modeling, and should be easily verifiable in the laboratory. As an important characteristic, the twisted relativistic light pulse has a strong torque and ultrahigh OAM density

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    An optimized four-chanel microstrip array at 7T

    Get PDF
    The microstrip transmission-line (MTL) transmit/receive loop array has been recently developed for MR applications at ultrahigh fields (>4T). In this study, the geometry of transmission-line array, including the substrate thickness and gap between coil elements was investigated by simulation and the capacitive decoupling method was analyzed. Finally an optimized four-channel microstrip loop array was built for 7T.published_or_final_versio

    Inductively Decoupled Microstrip Array at 9.4T

    Get PDF
    In this study, an inductive decoupling technique of microstrip array for ultra high fields has been discussed. The decoupling inductance is nearly independent of resonant frequency. Thus microstrip arrays can be tuned and work well at the magnetic fields higher than 7T. For the prototype of volume array, the introduced inductors can reduce the mutual coupling not only between adjacent elements, but also between non-adjacent elements.published_or_final_versio

    Application of density dependent parametrization models to asymmetric nuclear matter

    Full text link
    Density dependent parametrization models of the nucleon-meson effective couplings, including the isovector scalar \delta-field, are applied to asymmetric nuclear matter. The nuclear equation of state and the neutron star properties are studied in an effective Lagrangian density approach, using the relativistic mean field hadron theory. It is known that the introduction of a \delta-meson in the constant coupling scheme leads to an increase of the symmetry energy at high density and so to larger neutron star masses, in a pure nucleon-lepton scheme. We use here a more microscopic density dependent model of the nucleon-meson couplings to study the properties of neutron star matter and to re-examine the \delta-field effects in asymmetric nuclear matter. Our calculations show that, due to the increase of the effective \delta coupling at high density, with density dependent couplings the neutron star masses in fact can be even reduced.Comment: 5 pages, 4 figure

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore