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Bounded H∞ Synchronization and State Estimation
for Discrete Time-Varying Stochastic Complex

Networks Over a Finite Horizon
Bo Shen, Zidong Wang, Senior Member, IEEE, and Xiaohui Liu

Abstract— In this paper, new synchronization and state esti-
mation problems are considered for an array of coupled discrete
time-varying stochastic complex networks over a finite horizon.
A novel concept of bounded H∞ synchronization is proposed to
handle the time-varying nature of the complex networks. Such
a concept captures the transient behavior of the time-varying
complex network over a finite horizon, where the degree of
bounded synchronization is quantified in terms of the H∞-norm.
A general sector-like nonlinear function is employed to describe
the nonlinearities existing in the network. By utilizing a time-
varying real-valued function and the Kronecker product, criteria
are established that ensure the bounded H∞ synchronization in
terms of a set of recursive linear matrix inequalities (RLMIs),
where the RLMIs can be computed recursively by employing
available MATLAB toolboxes. The bounded H∞ state estimation
problem is then studied for the same complex network, where
the purpose is to design a state estimator to estimate the network
states through available output measurements such that, over a
finite horizon, the dynamics of the estimation error is guaranteed
to be bounded with a given disturbance attenuation level. Again,
an RLMI approach is developed for the state estimation problem.
Finally, two simulation examples are exploited to show the
effectiveness of the results derived in this paper.

Index Terms— Bounded H∞ synchronization, complex net-
works, discrete-time networks, finite horizon, recursive linear
matrix inequalities, stochastic networks, time-varying networks,
transient behavior.

I. INTRODUCTION

COMPLEX networks are made up of interconnected nodes
and are used to describe various systems of the real

world. Many real-world systems can be described by com-
plex networks, such as the World Wide Web, telephone call
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graphs, neural networks, scientific citation web, etc. Since the
discoveries of the “small-world” and “scale-free” properties
of complex networks [1], [2], complex networks have become
a focus of research and have attracted increasing attention
from various fields of science and engineering. In particular,
special attention has been paid to the synchronization problem
for dynamical complex networks, in which each node is
regarded as a dynamical element. It has been shown that
the synchronization is ubiquitous in many system models of
the natural world, for example, the large-scale and complex
networks of chaotic oscillators [3]–[10], the coupled systems
exhibiting spatiotemporal chaos and autowaves [11], [12], and
the array of coupled neural networks [13]–[21].

Recently, the synchronization problem for discrete-time sto-
chastic complex networks has drawn much research attention
since it is rather challenging to understand the interaction
topology of complex networks because of the discrete and
random nature of network topology [22]. On one hand,
discrete-time networks could be more suitable to model dig-
itally transmitted signals in many application areas such as
image processing, time-series analysis, quadratic optimization
problems, and system identification. On the other hand, the
stochastic disturbances over a real complex network may result
from the release of probabilistic causes such as neurotransmit-
ters [23], random phase-coupled oscillators [24], and packet
dropouts [25]. A great number of results are in the recent
literature on the general topic of stochastic synchronization
problem for discrete-time complex networks. For example,
in [26], the problem of stochastic synchronization analysis
has been investigated for a new array of coupled discrete-
time stochastic complex networks with randomly occurred
nonlinearities and time delays. The synchronization stability
problem has been studied in [27] for a class of complex
dynamical networks with Markovian jumping parameters and
mixed time delays. In [28], the delay-distribution-dependent
stability has been discussed for stochastic discrete-time neural
networks with randomly mixed time-varying delays.

Although the synchronization problem for discrete-time
stochastic complex networks is now attracting increasing
research attention, there are still several open problems de-
serving further investigation. In a real world, virtually all
complex networks are time-varying, that is, all the network
parameters are explicitly dependent on time. For example, a
major challenge in biological networks is to understand and
model, quantitatively, the dynamic topological and functional
properties of biological networks. Such time- or condition-
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specific biological circuitries are referred to as time-varying
networks or structural nonstationary networks, which are com-
mon in biological systems. The synchronization problem for
time-varying complex networks has received some scattered
research interest, where most literature has focused on time-
varying coupling or time-varying delay terms. For example,
in [29], a time-varying complex dynamical network model
has been introduced, and it has been revealed that the syn-
chronization of such a model is completely determined by
the inner-coupling matrix, the eigenvalues, and the corre-
sponding eigenvectors of the coupling configuration matrix
of the network. Very recently, in [30], a class of controlled
time-varying complex dynamical networks with similarity has
been investigated, and a decentralized holographic structure
controller is designed to stabilize the network asymptotically
at its equilibrium states. It should be pointed out that, up to
now, the general synchronization results for complex networks
with time-varying network parameters have been very few,
especially when the networks exhibit both discrete-time and
stochastic natures.

In fact, for a truly time-varying discrete stochastic com-
plex network, it is often theoretically difficult and practically
unnecessary to establish easy-to-verify criteria for ensuring
the global or asymptotical synchronization (steady-state be-
havior). Instead, we would be more interested in the transient
behaviors over a finite time interval, e.g., the boundedness
of the synchronization errors in the mean square and the
disturbance rejection attenuation level of the error evolutions.
For example, in biological networks, gene promoters can be
in various epigenetic states and undergo interactions with
many molecules in a highly transient, probabilistic, and com-
binatorial way, and therefore the resulting complex dynamics
can only be analyzed within a finite period [31]. Despite
its clear engineering insight, the synchronization problem for
time-varying discrete stochastic complex networks poses some
fundamental difficulties. 1) How can we define the synchro-
nization concept over a finite horizon? 2) How can we quantify
the attenuation level of the synchronization against exogenous
disturbances? 3) How can we develop an effective technique
to derive mathematically verifiable synchronization criteria?
These questions may well explain why the synchronization
problem for time-varying complex networks with or without
stochastic disturbances is still open, and such a situation is the
first motivation of our current investigation.

Closely associated with the synchronization problem is the
so-called state estimation problem for complex networks. For
large-scale complex networks, it is quite common that only
partial information about the network nodes (states) is acces-
sible from the network outputs. Therefore, in order to make
use of key network nodes in practice, it becomes necessary to
estimate the network nodes through available measurements.
Note that the state estimation problem for neural networks (a
special class of complex networks) was first addressed in [32]
and has then drawn particular research interests (see [33], [34])
where the networks are deterministic and continuous-time.
Recently, the state estimation problem for complex networks
has also gained much attention, see [35]. When it comes
to the transient behaviors of time-varying complex networks,

similar to the synchronization problem, two natural questions
are, how to define the estimator error over a finite horizon
in a quantitative way and how to establish the existence
conditions for the desired estimators. It is, therefore, the
second motivation in our paper to offer satisfactory answers
to the two questions.

In this paper, we aim to deal with the synchronization and
state estimation problems for an array of coupled discrete time-
varying stochastic complex networks over a finite horizon.
The contribution of this paper is mainly twofold: 1) a novel
concept of bounded H∞ synchronization is proposed to reflect
the time-varying nature of the complex networks and quantify
the attenuation level of the disturbance rejection via the
H∞-norm, and 2) both synchronization and state estimation
problems are solved by utilizing a time-varying real-valued
function, the Kronecker product, as well as the recursive linear
matrix inequalities (RLMIs). Rather than the commonly used
Lipschitz-type function, a more general sector-like nonlinear
function is employed to describe the nonlinearities existing
in the network. We first define the concept of bounded
H∞ synchronization for the stochastic complex networks in
the discrete-time domain. By utilizing a time-varying real-
valued function and the Kronecker product, we show that the
addressed synchronization problem can be converted into the
feasibility problem of a set of RLMIs. We then turn to the state
estimation problem for the same complex networks. Through
available output measurements, we aim to design a state
estimator to estimate the network states such that the dynamics
of the estimation error is bounded in an H∞ sense. Again, an
RLMI approach is used, with the main proof omitted, for the
state estimation case. Two simulation examples are provided
to show the usefulness of the proposed synchronization and
state estimation schemes.

Notation: The notation used here is fairly standard except
where otherwise stated. R

n denotes the n-dimensional Euclid-
ean space. ‖A‖ refers to the norm of a matrix A defined
by ‖A‖ =

√
trace(AT A). The notation X ≥ Y (respectively,

X > Y ), where X and Y are real symmetric matrices, means
that X − Y is positive semidefinite (respectively, positive
definite). MT represents the transpose of the matrix M . I
denotes the identity matrix of compatible dimension. diag{· · · }
stands for a block-diagonal matrix and the notation diagn{∗} is

employed to stand for diag{
n

︷ ︸︸ ︷∗, . . . , ∗}. Moreover, we may fix a
probability space (�,F , Prob), where Prob, the probability
measure, has a total mass 1. E{x} stands for the expecta-
tion of the stochastic variable x with respect to the given
probability measure Prob. The asterisk ∗ in a matrix is used
to denote a term induced by symmetry. Matrices, if they
are not explicitly specified, are assumed to have compatible
dimensions.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let a finite discrete time horizon be given as [0 N] :=
{0, 1, 2, . . . , N}. Consider the following array of stochas-
tic discrete time-varying complex networks consisting of M
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coupled nodes of the form

xi (k + 1) = f (k, xi (k)) +
M∑

j=1

wi j �x j (k) + Bi (k)v(k)

+gi(k, xi (k))ω(k), i = 1, 2, . . . , M (1)

with output

zi (k) = E(k)xi(k), i = 1, 2, . . . , M (2)

where xi (k) ∈ R
n is the state vector of the i th node,

zi (k) ∈ R
m is the controlled output of the i th node, � =

diag{r1, r2, . . . , rn} is a matrix linking the j th state variable
if r j �= 0, and W = (wi j )M×M is the coupled configuration
matrix of the network with wi j ≥ 0 (i �= j) but not all zero.
As usual, the coupling configuration matrix W = (wi j )M×M

is symmetric (i.e., W = W T ) and satisfies

M∑

j=1

wi j =
M∑

j=1

w j i = 0, i = 1, 2, . . . , M. (3)

ω(k) is a 1-D, zero-mean Gaussian white noise sequence on
a probability space (�,F , Prob) with E{ω2(k)} = 1. Let (�,
F , {Fk}k∈[0 N], Prob) be a filtered probability space where
{Fk}k∈[0 N] is the family of sub σ -algebras of F generated by
{ω(k)}k∈[0 N]. In fact, each Fk is assumed to be the minimal
σ -algebras generated by {ω(i)}0≤i≤k−1, while F0 is assumed
to be some given sub σ -algebras of F , independent of Fk

for all 1 ≤ k ≤ N [36], and the initial value xi (0) (i =
1, 2, . . . , M) belongs to F0.

For the exogenous disturbance input v(k) ∈ R
q , it

is assumed that v = {v(k)}k∈[0 N] ∈ l2([0 N], R
q ),

where l2([0 N], R
q ) is the space of nonanticipatory square-

summable stochastic process v = {v(k)}k∈[0 N] with respect
to {Fk}k∈[0 N] with the norm

‖v‖2[0 N] = E

{
N∑

k=0

‖v(k)‖2

}

=
N∑

k=0

E

{
‖v(k)‖2

}
.

The nonlinear vector-valued function f : [0 N] × R
n →

R
n is assumed to be continuous and satisfies the following

sector-bounded condition [26], [35]:
[ f (k, x) − f (k, y) − U1(k)(x − y)]T [ f (k, x) − f (k, y)

− U2(k)(x − y)] ≤ 0, ∀x, y ∈ R
n (4)

for all k ∈ [0 N], where U1(k) and U2(k) are real matrices
of appropriate dimensions.

The noise intensity function vector gi : [0 N] × R
n → R

n

is continuous and satisfies the following conditions:
gi (k, 0) = 0

‖gi(k, x) − g j (k, y)‖2 ≤ ‖V (k)(x − y)‖2, ∀x, y ∈ R
n (5)

for all k ∈ [0 N] and i, j = 1, 2, . . . , M , where V (k) is a
constant matrix.

For the purpose of simplicity, we introduce the following
notations:

x(k) =
[
x T

1 (k) x T
2 (k) · · · x T

M (k)
]T

B(k) =
[

BT
1 (k) BT

2 (k) · · · BT
M (k)

]T

F(k, x(k)) =
[

f T (k, x1(k)) f T (k, x2(k)) · · · f T (k, xM (k))
]T

G(k, x(k)) =
[
gT

1 (k, x1(k)) gT
2 (k, x2(k)) · · · gT

M(k, xM (k))
]T

.

(6)

By using the Kronecker product, the complex networks (1)
can be rewritten in the following compact form:

x(k + 1) = F(k, x(k)) + (W ⊗ �)x(k)

+B(k)v(k) + G(k, x(k))ω(k). (7)

To proceed, we introduce the following definition for the
bounded H∞ synchronization.

Definition 1: The stochastic discrete time-varying complex
network (1) or (7) is said to be boundedly H∞-synchronized
with a disturbance attenuation γ over a finite horizon [0 N]
if the following holds:
∑

1≤i< j≤M

‖zi − z j ‖2[0 N] ≤ γ 2
{
‖v‖2[0 N] + E{x T (0)Sx(0)}

}

(8)

for the given positive scalar γ > 0 and positive definite matrix
S = ST > 0.

Remark 1: In the past few years, the synchronization prob-
lems of complex networks have been well studied over the
infinite time horizon, see [35], where all synchronization
errors between the subsystems of a complex network are
required to asymptotically approach zero. However, for the
inherently time-varying complex networks addressed in this
paper, we are more interested in the transient behavior of
the synchronization over a specified time interval. In other
words, we like to examine the transient behavior over a finite
horizon rather than the steady-state property over an infinite
horizon. For this purpose, we make one of the first few
attempts to define the notion of bounded H∞-synchronization
with a disturbance attenuation level so as to characterize the
performance requirement of the synchronization over a finite
horizon. It is noticed that, if the constraint (8) is met, then the
synchronization error between any pair of subsystems of the
complex network is guaranteed to be bounded. Furthermore,
the H∞ performance index γ > 0 is used to quantify the
attenuation level of the synchronization error dynamics against
exogenous disturbances.

In this paper, our aim is to investigate the bounded H∞-
synchronization problem and establish easy-to-verify criteria
for the stochastic discrete time-varying complex network (1)
over a finite time horizon. Later, we shall address the finite-
horizon H∞ state estimation problem by designing the finite-
horizon H∞ estimators for the stochastic discrete time-varying
complex network (1).
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III. BOUNDED H∞-SYNCHRONIZATION OF DISCRETE

TIME-VARYING COMPLEX NETWORKS

In this section, we deal with the bounded H∞-synchroniza-
tion problem for the stochastic discrete time-varying complex
network (1) with a given disturbance attenuation level over
a finite time horizon. The following lemma is important and
will be used in the sequel.

Lemma 1 [35]: Let U = (αi j )M×M , P ∈ R
n×n , x =

[
xT

1 x T
2 · · · x T

M

]T
, and y = [

yT
1 yT

2 · · · yT
M

]T
with

xi , yi ∈ R
n (i = 1, 2, . . . , M). If UT = U and each row sum

of U is zero, then

x T (U ⊗ P)y = −
∑

1≤i< j≤M

αi j (xi − x j )
T P(yi − y j ). (9)

The following theorem provides a sufficient condition
under which the complex network (1) is boundedly H∞-
synchronized with the given disturbance attenuation level over
a finite time horizon.

Theorem 1: Let the positive scalar γ > 0 and the initial
positive definite matrix ST = S > 0 be given. The stochastic
discrete time-varying complex network (1) or (7) is boundedly
H∞-synchronized with the disturbance attenuation γ over a
finite horizon [0 N] if there exist a family of positive definite
matrices {P(k)}0≤k≤N+1 and two families of positive scalars
{λ1(k)}0≤k≤N , {λ2(k)}0≤k≤N satisfying the initial condition

∑

1≤i< j≤M

E

{
(xi(0) − x j (0))T P(0)(xi (0) − x j (0))

}

≤ γ 2
E

{
x T (0)Sx(0)

}
(10)

and the RLMIs (11) shown at the bottom of the page, for all
0 ≤ k ≤ N and 1 ≤ i < j ≤ M , where

	
(1)
i j (k) = −Mw

(2)
i j �T P(k + 1)� − P(k) + ET (k)E(k)

−λ1(k)Ũ1(k) + λ2(k)V T (k)V (k),

	
(2)
i j (k) = −Mwi j �

T P(k + 1) − λ1(k)Ũ2(k),

	
(3)
i j (k) = −Mwi j �

T P(k + 1)Bi j (k),

	
(4)
i j (k) = P(k + 1)Bi j (k),

	
(5)
i j (k) = − 2γ 2 I

M(M − 1)
+ BT

i j (k)P(k + 1)Bi j (k),

Ũ1(k) = U T
1 (k)U2(k) + U T

2 (k)U1(k)

2
,

Ũ2(k) = −U T
1 (k) + U T

2 (k)

2
,

Bi j (k) = Bi (k) − B j (k), w
(2)
i j =

M∑

k=1

wikwkj . (12)


i j (k) =

⎡

⎢
⎢
⎢
⎣

	
(1)
i j (k) 	

(2)
i j (k) 0 	

(3)
i j (k)

∗ P(k + 1) − λ1(k)I 0 	
(4)
i j (k)

∗ ∗ P(k + 1) − λ2(k)I 0
∗ ∗ ∗ 	

(5)
i j (k)

⎤

⎥
⎥
⎥
⎦

≤ 0 (11)

Proof: See Appendix I.
Remark 2: It should be pointed out that the RLMI tech-

nique [37], [38] serves as an effective approach to investigating
the problems of H∞ filtering and control in a finite time
horizon. In Theorem 1, the RLMI approach has been applied,
for the first time, to deal with the synchronization problem
for the discrete time-varying stochastic complex network and
derive a criterion for testing the bounded H∞-synchronization
in terms of a set of RLMIs.

Remark 3: Different from the infinite time horizon case,
the asymptotical behavior of synchronization error is not
required to be analyzed for a time-varying complex net-
work over a finite time horizon and, therefore, the syn-
chronization criterion given in Theorem 1 takes care of
the boundedness of the synchronization error but does not
actually guarantee its convergence. In case the considered
complex network is time-invariant and its steady-state prop-
erty over an infinite horizon is a concern, an LMIs-based
asymptotical synchronization criterion can be easily deduced
from the RLMIs (11) as long as the variables P(k), λ1(k),
and λ2(k) are taken as constant variables P , λ1, and λ2,
respectively.

IV. FINITE-HORIZON H∞ STATE ESTIMATION FOR

DISCRETE TIME-VARYING COMPLEX NETWORKS

In this section, the finite-horizon H∞ state estimation prob-
lem is first formulated for the stochastic discrete time-varying
complex network (1), and then an array of time-varying H∞
estimators is designed by using the RLMI approach.

Suppose that the measurement of the complex network (1)
is of the form

yi (k) = Ci (k)xi (k) + Di (k)v(k), i = 1, 2, . . . , M (13)

where yi(k) ∈ R
r is the measured output vector from the i th

node of the complex network.
Based on the measurements yi (k) (i = 1, 2, . . . , M), we

construct the following state estimator:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̂i (k + 1) = f (k, x̂i (k)) +
M∑

j=1
wi j �x̂ j (k)

+Ki (k)(yi(k) − Ci (k)x̂i(k))

ẑi (k) = E(k)x̂i (k), i = 1, 2, . . . , M

(14)

where x̂i (k) ∈ R
n is the estimate of network state xi(k),

ẑi (k) ∈ R
m is the estimate of output zi (k), and Ki (k) ∈ R

n×r

is the estimator parameter to be designed. The initial values
of estimators are assumed to be zeros, i.e., x̂i (0) = 0 for all
i = 1, 2, . . . , M .

By setting the estimation error ei = xi − x̂i and the filtering
error z̃i = zi − ẑi , the error dynamics of complex network can
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be obtained from (1), (13), and (14) as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ei (k + 1) = −Ki (k)Ci (k)ei (k) + f̃ (k, ei (k))

+
M∑

j=1
wi j �e j (k) + (Bi (k) − Ki (k)Di (k))v(k)

+gi(k, ei (k) + x̂i (k))ω(k)

z̃i (k) = E(k)ei (k) (15)

where f̃ (k, ei (k)) = f (k, xi (k)) − f (k, x̂i (k)).
Introducing the notations

x̂(k) = [x̂ T
1 (k) x̂ T

2 (k) · · · x̂ T
M(k)

]T
,

e(k) = [eT
1 (k) eT

2 (k) · · · eT
M (k)

]T
,

z̃(k) = [z̃T
1 (k) z̃T

2 (k) · · · z̃T
M (k)

]T
,

K (k)=diag{K1(k), K2(k), . . . , KM (k)}, (16)

C(k) = diag{C1(k), C2(k), . . . , CM (k)},
D(k) = [DT

1 (k) DT
2 (k) · · · DT

M (k)
]T

,

E�(k) = diagM {E(k)},
F̃(k, e(k)) =

[
f̃ T (k, e1(k)) f̃ T (k, e2(k)) · · · f̃ T (k, eM (k))

]T

we can rewrite the error dynamics of complex networks (15)
in the following compact form:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e(k + 1) = (−K (k)C(k) + W ⊗ �)e(k) + F̃(k, e(k))

+ (B(k) − K (k)D(k))v(k)

+ G(k, e(k) + x̂(k))ω(k)

z̃(k) = E�(k)e(k) (17)

where B(k) and G(k, x(k)) are defined in (6).
In this section, we aim to design the time-varying estimators

(14) for the stochastic discrete time-varying complex network
(1) such that the filtering error z̃(k) satisfies the following H∞
performance constraint:

‖z̃‖2[0 N] ≤ γ 2
{
‖v‖2[0 N] + E{eT (0)Se(0)}

}
(18)

for the given disturbance attenuation level γ > 0 and positive
definite matrix ST = S > 0.

In the following theorem, a sufficient condition is given to
guarantee that the filtering error satisfies the H∞ performance
constraint (18).

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1(k) −ε1(k)Ũ2�(k) 0 0 ε2(k)V T
� (k)V�(k)x̂(k) �2(k) 0

∗ −ε1(k)I 0 0 0 P(k + 1) 0
∗ ∗ −γ 2 I 0 0 �3(k) 0
∗ ∗ ∗ −ε2(k)I 0 0 P(k + 1)
∗ ∗ ∗ ∗ �4(k) 0 0
∗ ∗ ∗ ∗ ∗ −P(k + 1) 0
∗ ∗ ∗ ∗ ∗ ∗ −P(k + 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 0 (20)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1(k) −ε1(k)Ũ2�(k) 0 0 ε2(k)V T
� (k)V�(k)x̂(k) �̄2(k) 0

∗ −ε1(k)I 0 0 0 P(k + 1) 0
∗ ∗ −γ 2 I 0 0 �̄3(k) 0
∗ ∗ ∗ −ε2(k)I 0 0 P(k + 1)
∗ ∗ ∗ ∗ �4(k) 0 0
∗ ∗ ∗ ∗ ∗ −P(k + 1) 0
∗ ∗ ∗ ∗ ∗ ∗ −P(k + 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 0 (22)

Theorem 2: Let the scalar γ > 0, initial positive definite
matrix ST = S > 0, and estimator parameters Ki (k) (i =
1, 2, . . . , M) be given. The filtering error z̃(k) satisfies the
H∞ performance constraint (18) if there exist a family of
positive definite matrices {P(k)}0≤k≤N+1 and three families of
positive scalars {ε1(k)}0≤k≤N , {ε2(k)}0≤k≤N , {μ(k)}0≤k≤N+1
satisfying the initial condition

E

{
eT (0)P(0)e(0)

}
+ μ(0) ≤ γ 2

E

{
eT (0)Se(0)

}
(19)

and the RLMIs (20) shown at the bottom of page, for all
0 ≤ k ≤ N , where

�1(k) = − P(k) + ET
�(k)E�(k) − ε1(k)Ũ1�(k)

+ ε2(k)V T
� (k)V�(k),

�2(k) = − CT (k)K T (k)P(k + 1) + (W ⊗ �)T P(k + 1),

�3(k) = BT (k)P(k + 1) − DT (k)K T (k)P(k + 1),

�4(k) = μ(k + 1) − μ(k) + ε2(k)x̂ T (k)V T
� (k)V�(k)x̂(k),

Ũ1�(k) = U T
1�(k)U2�(k) + U T

2�(k)U1�(k)

2
,

Ũ2�(k) = − U T
1�(k) + U T

2�(k)

2
,

U1�(k) = diagM {U1(k)}, U2�(k) = diagM {U2(k)},
V�(k) = diagM {V (k)}. (21)

Proof: See Appendix II.
After establishing the analysis results, we are now ready

to deal with the design problem of the finite-horizon H∞
estimators for the stochastic network (1). The following result
can be readily derived from Theorem 2, and therefore its proof
is omitted for saving space.

Theorem 3: Let the scalar γ > 0 and initial positive
definite matrix ST = S > 0 be given. The finite-horizon
H∞ estimation problem is solvable for the time-varying sto-
chastic complex network (1) if there exist a family of positive
definite diagonal block matrices {P(k) = diag{P1(k),
P2(k), . . . , PM (k)}}0≤k≤N+1, a family of diagonal block ma-
trices {X (k) = diag{X1(k), X2(k), . . . , X M (k)}}0≤k≤N , and
three families of positive scalars {ε1(k)}0≤k≤N , {ε2(k)}0≤k≤N ,
{μ(k)}0≤k≤N+1 satisfying the initial condition (19) and the
RLMIs (22) shown at the bottom of the page,
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where

�̄2(k) = −CT (k)X T (k) + (W ⊗ �)T P(k + 1)

�̄3(k) = BT (k)P(k + 1) − DT (k)X T (k),
(23)

�1(k), �4(k), Ũ2�(k), and V�(k) are defined in Theorem 2.
Furthermore, if (19) and (22) are true, the desired estimators
are given by (14) with the following parameters:

Ki (k) = P−1
i (k + 1)Xi (k), i = 1, 2, . . . , M (24)

for all 0 ≤ k ≤ N .
Remark 4: In Theorem 3, a criterion is established to ensure

the existence of the desired estimator gains, and the explicit
expression of such estimator gains is characterized in terms
of the solution to a set of RLMIs. Note that such RLMIs can
be effectively solved and checked by the algorithms such as
the interior-point method. The state estimate at current time
is involved in RLMIs (22), which means that more current
information is used to estimate the state the next time. In this
sense, the estimator design scheme in terms of RLMIs (22)
can potentially improve the accuracies of the state estimation.

V. ILLUSTRATIVE EXAMPLES

In this section, two simulation examples are presented to
demonstrate the effectiveness of the established criteria on the
bounded H∞-synchronization as well as the finite-horizon H∞
state estimation problems for the complex network (1).

Consider a stochastic time-varying complex network (1)
with four nodes in a given finite time horizon k ∈ [0 25].
The coupling configuration matrix are assumed to be W =
(wi j )M×M with

wi j =
{−0.3, i = j

0.1, i �= j

and the inner-coupling matrix is given as � = diag4{0.1}.
The nonlinear time-varying function f (k, xi (k)) is

chosen as
f (k, xi (k)) =
⎧
⎪⎪⎨

⎪⎪⎩

[−0.15xi1(k) + 0.1xi2(k) + tanh(0.1xi1(k))
0.25xi2(k) − tanh(0.1xi2(k))

]
, 0 ≤ k < 10

[
0.25xi1(k) − tanh(0.15xi1(k))

0.1xi2(k)

]
, 10 ≤ k ≤ 25

and the disturbance matrices are taken as

B1(k) =
[

0.14 + 0.1 sin(6(k − 1))
0.12

]
, B2(k) =

[−0.13
0.1

]
,

B3(k) =
[

0
−0.15

]
, B4(k) =

[
0.15
0.1

]
.

The noise intensity function is simplified to gi(k, xi (k)) =
Vi (k)xi (k), with

Vi (k) =
[

0.09 −0.117
−0.045 0.135

]
, i = 1, 2, 3, 4.

Then, it is easily verified that

U1(k) =

⎧
⎪⎪⎨

⎪⎪⎩

[−0.15 0.1
0 0.25

]
, 0 ≤ k < 10

[
0.25 0

0 0.1

]
, 10 ≤ k ≤ 25
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0 5 10 15 20 25
Time (k)

0 5 10 15 20 25
Time (k)

−0. 02

0

0.02

z 1 
− 

z 2

−0.02

0

0.02

z 1 
− 

z 3

−0.02

0

0.02

z 1 
− 

z 4

Fig. 1. Synchronization errors between z1(k) and zi (k) (i = 2, 3, 4).

U2(k) =

⎧
⎪⎪⎨

⎪⎪⎩

[−0.05 0.1
0 0.15

]
, 0 ≤ k < 10

[
0.1 0
0 0.1

]
, 10 ≤ k ≤ 25

and V (k) =
[

0.09 −0.117
−0.045 0.135

]
.

We are now ready to deal with the bounded H∞-
synchronization problem as well as the finite-horizon H∞
state estimation problem over the given finite horizon for the
complex network (1) with above parameters.

Example 1: In this example, let us test the bounded
H∞-synchronization of the complex network based on our
established criterion. Set the initial values of the complex
network as

x1(0) = [0.1 −0.15
]T

x2(0) = [0.15 −0.1
]T

x3(0) = [0.2 −0.1
]T

x4(0) = [0.1 −0.2
]T

.

Let the disturbance attenuation level and the positive definite
matrix be γ = 0.7071 and S = diag8{1}, respectively. In
order to check whether the complex network mentioned above
is boundedly H∞-synchronized with the given disturbance
attenuation level γ , we first choose the initial positive definite
matrices P(0) = diag2{1} to satisfy the initial condition (10).
Then the set of RLMIs (11) in Theorem 1 can be solved
recursively by using MATLAB (with the YALMIP 3.0), and
a set of feasible solutions is obtained as shown in Table I.
According to Theorem 1, the array of stochastic discrete
time-varying complex networks can reach the bounded H∞-
synchronization with the given disturbance attenuation level γ .

In the simulation, the exogenous disturbance input v(k)
is selected as a random variable that obeys uniform
distribution over [−0.25 0.25]. The simulation results are
presented in Fig. 1, which plots the synchronization error
between the output z1(k) and outputs zi (k) (i = 2, 3, 4).
It can be seen from Fig. 1 that all synchronization errors
are indeed bounded, which verifies the effectiveness of the
synchronization criteria proposed in Theorem 1.

Remark 5: Recently, considerable research efforts have
been made on the synchronization problems of complex
networks, and various synchronization concepts have been
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TABLE I

VARIABLES P(k), λ1(k), λ2(k)

k P(k) λ1(k) λ2(k)

0

[
1 0
0 1

]
1.0879 1.1482

1

[
0.1922 −0.0019

−0.0019 0.2030

]
0.7973 0.8180

2

[
0.1410 −0.0008

−0.0008 0.1480

]
0.8296 0.8484

3

[
0.1477 −0.0003

−0.0003 0.1544

]
0.8351 0.8544

4

[
0.1496 0.0000
0.0000 0.1560

]
0.8367 0.8561

5

[
0.1503 0.0002
0.0002 0.1565

]
0.8372 0.8565

...
...

...
...

21

[
0.1790 −0.0045

−0.0045 0.1797

]
0.8217 0.8318

22
[

0.1721 −0.0036
−0.0036 0.1709

]
0.8926 0.9029

23

[
0.1904 −0.0032

−0.0032 0.1874

]
0.8364 0.8471

24

[
0.1825 −0.0024

−0.0024 0.1786

]
0.8314 0.8418

25

[
0.1832 −0.0019

−0.0019 0.1786

]
0.8328 0.8432

proposed, such as asymptotical synchronization [14], [29],
exponential synchronization [4], [35], and exponential H∞
synchronization [16]. However, as far as we know, all the
synchronization concepts in the existing literature are con-
cerned with the case of infinite time horizon and only the
asymptotical behavior of the synchronization has been an-
alyzed. As a distinguishing feature, the notion of bounded
H∞-synchronization proposed in this paper can be used to
characterize the transient behavior of the synchronization over
a specified time interval. In other words, the derived bounded
H∞-synchronization criterion can guarantee that: 1) the syn-
chronization error over a given time interval is bounded, and
2) the influence from the external disturbances and the initial
states to the synchronization error is attenuated with a given
H∞-norm γ . This has been well verified by the simulation
results of Example 1.

Example 2: In this example, we deal with the finite-horizon
H∞ state estimation problem. The initial values of complex
network are set as

x1(0) = [0.1 0.2
]T

x2(0) = [−0.2 0.1
]T

x3(0) = [−0.1 −0.15
]T

x4(0) = [−0.15 −0.1
]T

the disturbance attenuation level is given as γ = 1, and
the positive definite matrix is taken as S = diag8{5}. We
choose the initial positive definite matrices P1(0) = P2(0) =
P3(0) = P4(0) = diag2{1} and positive scalar μ(0) = 0.5
to satisfy the initial condition (19). By using MATLAB (with
the YALMIP 3.0) again, the set of RLMIs (22) in Theorem 3
can be solved recursively, and all desired estimator parameters
can be derived. Table II lists all estimator parameters Ki (k)

TABLE II

ESTIMATOR PARAMETERS Ki (k) (i = 1, 2, 3, 4)

k K1(k) K2(k) K3(k) K4(k)

0

[
0.1208
0.1461

] [−0.0697
0.1414

] [−0.0604
−0.2137

] [
0.1615
0.1459

]

1

[
0.0847
0.1299

] [−0.1207
0.1047

] [−0.0077
−0.1569

] [
0.1452
0.1127

]

2

[
0.0634
0.1300

] [−0.1134
0.1090

] [−0.0462
−0.1892

] [
0.1673
0.1344

]

3

[
0.0469
0.1191

] [−0.1230
0.1046

] [−0.0051
−0.1542

] [
0.1485
0.1019

]

4

[
0.0411
0.1209

] [−0.1282
0.1009

] [−0.0016
−0.1512

] [
0.1496
0.1013

]

5

[
0.0398
0.1253

] [−0.1093
0.1137

] [−0.0193
−0.1640

] [
0.1473
0.1089

]

...
...

...
...

...

21

[
0.1473
0.1198

] [−0.1364
0.1018

] [
0.0063

−0.1510

] [
0.1522
0.1001

]

22

[
0.1174
0.1201

] [−0.1302
0.1001

] [
0.0002

−0.1501

] [
0.1502
0.1001

]

23

[
0.0933
0.1198

] [−0.1370
0.1024

] [
0.0062

−0.1514

] [
0.1512
0.1007

]

24

[
0.0689
0.1200

] [−0.1308
0.1001

] [
0.0008

−0.1500

] [
0.1504
0.1000

]

25

[
0.0528
0.1201

] [−0.1317
0.1001

] [
0.0015

−0.1501

] [
0.1512
0.1001

]
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Fig. 2. Output z1(k) and its estimate ẑ1(k).

(i = 1, 2, 3, 4) and the variables Pi (k) (i = 1, 2, 3, 4) and
μ(k) are shown in Table III.

In the simulation, the exogenous disturbance input v(k) is
the same as that used in Example 1. Simulation results are
presented in Figs. 2–5 which show the output zi (k) and its
estimate ẑi (k) (i = 1, 2, 3, 4). The simulation has confirmed
that the designed estimators perform very well.

Remark 6: From above simulation examples, it can be seen
that the developed RLMI-based algorithms are implemented
where the initial variable matrices are chosen beforehand to
satisfy the conditions (10) and (19). For the synchronization
algorithm, the selection of initial matrices is independent of the
initial values of the complex network, which can be seen from
the condition (10). In other words, the H∞-synchronization of
the complex network depends only on the given attenuation
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TABLE III

VARIABLES Pi (k) (i = 1, 2, 3, 4) AND μ(k)

k P1(k) P2(k) P3(k) P4(k) μ(k)

0

[
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

]
0.5000

1

[
6.4331 −1.7597

−1.7597 6.3939

] [
5.9195 −1.8174

−1.8174 6.5502

] [
6.4184 −1.4750

−1.4750 6.8707

] [
6.5249 −1.5846

−1.5846 6.5494

]
0.4990

2

[
2.7170 −0.0017

−0.0017 2.7147

] [
2.7140 −0.0033

−0.0033 2.7117

] [
2.7162 −0.0021

−0.0021 2.7155

] [
2.7168 −0.0009

−0.0009 2.7160

]
0.4987

3

[
13.3071 −0.5008
−0.5008 13.3598

] [
11.0833 −1.8382
−1.8382 12.5355

] [
10.9266 −2.2962
−2.2962 11.9898

] [
13.1279 −0.6367
−0.6367 13.2111

]
0.4986

4

[
41.7495 −1.2458
−1.2458 41.6259

] [
38.2524 −3.7762
−3.7762 39.5097

] [
40.6841 −1.6534
−1.6534 41.3739

] [
42.3505 −0.5179
−0.5179 42.2990

]
0.4984

5

[
5.0967 −0.0018

−0.0018 5.0968

] [
5.0951 −0.0022

−0.0022 5.0956

] [
5.0962 −0.0017

−0.0017 5.0968

] [
5.0968 −0.0013

−0.0013 5.0972

]
0.4980

...
...

...
...

...
...

21

[
14.6042 0.0066
0.0066 14.6504

] [
14.5695 0.0003
0.0003 14.6490

] [
14.5482 −0.0053
−0.0053 14.6513

] [
14.6075 0.0079
0.0079 14.6509

]
0.4942

22

[
75.0034 0.4867
0.4867 77.0554

] [
72.4101 0.8626
0.8626 76.8426

] [
70.4913 0.2790
0.2790 77.1546

] [
75.2171 0.5131
0.5131 77.0856

]
0.4940

23

[
12.1434 0.0001
0.0001 12.1438

] [
12.1444 −0.0004
−0.0004 12.1438

] [
12.1445 −0.0001
−0.0001 12.1439

] [
12.1434 0.0002
0.0002 12.1438

]
0.4938

24

[
98.8228 5.9542
5.9542 116.0138

] [
98.8232 4.0458
4.0458 116.3961

] [
91.1770 1.8811
1.8811 117.8131

] [
101.6412 5.5271
5.5271 116.3522

]
0.4937

25

[
39.6120 0.0099
0.0099 39.6777

] [
39.6102 −0.0011
−0.0011 39.6776

] [
39.5736 −0.0083
−0.0083 39.6794

] [
39.6328 0.0087
0.0087 39.6789

]
0.4934
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Fig. 3. Output z2(k) and its estimate ẑ2(k).

level γ , but is not affected by the initial values. Although a
small attenuation level leads to smaller synchronization error,
there does exist a lowest bound for the attenuation level γ
especially when certain complexities such as parameter uncer-
tainties are present. For the complex network in Example 1,
the minimum γ can be computed as γ = 0.4425. On the
other hand, for the H∞ estimation algorithm, it can be seen
from (19) that the estimation algorithm depends not only
on the attenuation level γ but also on the initial values of
the complex network. In order to show the effects on the
filtering performance caused by different initial values and
attenuation levels, some comparative simulation results are
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Fig. 4. Output z3(k) and its estimate ẑ3(k).

presented in Figs. 6–13. Figs. 6–9 plot the filtering errors
z̃i (i = 1, 2, 3, 4) with different attenuation levels (γ = 1
and γ = 3), which shows that a smaller attenuation level
indeed results in better filtering performance. Moreover, the
filtering errors z̃i (i = 1, 2, 3, 4) with different initial values
are depicted in Figs. 10–13.

Remark 7: Note that the RLMI approach developed in
this paper is based on LMIs. The standard LMI system
has a polynomial-time complexity, which is bounded by
O(MN3 log(V/ε)), where M is the total row size of the LMI
system, N is the total number of scalar decision variables, V is
a data-dependent scaling factor, and ε is relative accuracy set
for algorithm. The computational complexity of the developed
RLMI-based algorithm can be easily obtained via the time
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Fig. 5. Output z4(k) and its estimate ẑ4(k).
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Fig. 6. Filtering error z̃1(k) with different attenuation levels.
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Fig. 7. Filtering error z̃2(k) with different attenuation levels.

complexity of the standard LMI system. For example, let
us look at the bounded H∞-synchronization criterion for the
complex network (1) (as described in Theorem 1), where the
number of network nodes is M , the length of finite time
horizon is N + 1, and the dimensions of network variables
can be seen from xi (k) ∈ R

n , zi (k) ∈ R
m (i = 1, 2, . . . , M),
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Fig. 8. Filtering error z̃3(k) with different attenuation levels.
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Fig. 9. Filtering error z̃4(k) with different attenuation levels.
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Fig. 10. Filtering error z̃1(k) with different initial values.

v(k) ∈ R
q , and ω(k) ∈ R. The RLMI-based synchroniza-

tion criterion is implemented recursively for N + 1 steps
and, at every step, M(M − 1)/2 standard LMIs given by
(11) need to be solved. For each of these LMIs, we have
M = 3n + q and N = (n2 + n + 4)/2. Therefore, the
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Fig. 11. Filtering error z̃2(k) with different initial values.
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Fig. 12. Filtering error z̃3(k) with different initial values.

0 5 10 15 20 25
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Time (k)

Fi
lte

ri
ng

 e
rr

or
 z̃

4

Initial value x
4
 � [−0.15; −0.1]

Initial value x
4
 � [−0.1; −0.2]

Fig. 13. Filtering error z̃4(k) with different initial values.

computational complexity of the RLMI-based synchroniza-
tion criterion algorithm can be represented as O(n3 M2 N +
n2 M2 Nq). Similarly, it is not difficult to calculate that the
time complexity of the finite-horizon H∞ state estimation
algorithm is O(n3 M2 N + n2q M N + n2r M2 N + nqr M N).

Obviously, the computational complexity of the RLMI-based
algorithms depends linearly on the length of finite time horizon
and polynomially on the dimensions of network variables,
which means that the overall computational burden is mainly
caused by the complexity of LMI computation. Fortunately,
research on LMI optimization is a very active area in the
applied mathematics, optimization, and the operations research
community, and substantial speedups can be expected in the
future.

VI. CONCLUSION

In this paper, we have addressed a novel synchronization
problem for a class of discrete time-varying stochastic complex
networks over a finite horizon. A notion of bounded H∞ syn-
chronization has been first defined to characterize the transient
performance of synchronization. Then a testing criterion on
the bounded H∞-synchronization has been established for the
considered complex networks in terms of a set of RLMIs.
Subsequently, the finite-horizon H∞ state estimation problem
has been considered for the complex networks under consid-
eration. By using the RLMI approach, a sufficient condition
under which the filtering error satisfies the H∞ performance
constraint has been obtained, and then all the desired finite-
horizon H∞ estimators have been designed. Finally, two
simulation examples have been employed to demonstrate the
effectiveness of the results derived in this paper. Further
research topics include the extension of our results to more
general complex networks with various time delays and also
to the H∞ estimation problem for complex networks with
multiple coupled sensors.

APPENDIX I

PROOF OF THEOREM 1

Proof: Define the real-valued function

V (k, x(k)) = xT (k)
(
U ⊗ P(k)

)
x(k) (25)

where {P(k)}0≤k≤N+1 is the solution to the RLMIs (11) with
the initial condition (10) and U = (αi j )M×M with

αi j =
{

M − 1, i = j
−1, i �= j .

We can calculate

E{V (k + 1, x(k + 1))} − E{V (k, x(k))}
+

∑

1≤i< j≤M

E{‖zi (k) − z j (k)‖2} − γ 2
E{‖v(k)‖2}

= E

⎧
⎨

⎩
FT (k, x(k))

(
U ⊗ P(k + 1)

)
F(k, x(k))

+x T (k)(W ⊗ �)T
(
U ⊗ P(k + 1)

)
(W ⊗ �)x(k)
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+GT (k, x(k))
(
U ⊗ P(k + 1)

)
G(k, x(k))

+vT (k)BT (k)
(
U ⊗ P(k + 1)

)
B(k)v(k)

+2FT (k, x(k))
(
U ⊗ P(k + 1)

)
(W ⊗ �)x(k)

+2FT (k, x(k))
(
U ⊗ P(k + 1)

)
B(k)v(k)

+2x T (k)(W ⊗ �)T
(
U ⊗ P(k + 1)

)
B(k)v(k)

−x T (k)
(
U ⊗ P(k)

)
x(k)

+
∑

1≤i< j≤M

‖zi (k) − z j (k)‖2 − γ 2‖v(k)‖2

⎫
⎬

⎭
. (26)

For the purpose of notation simplicity, set

xi j (k) = xi (k) − x j (k)

fi j (k) = f (k, xi (k)) − f (k, x j (k))

gi j (k) = gi (k, xi (k)) − g j (k, x j (k)).

(27)

By using Lemma 1 and noting (6), we can obtain that

E{V (k + 1, x(k + 1))} − E{V (k, x(k))}
+

∑

1≤i< j≤M

E

{
‖zi (k) − z j (k)‖2

}
− γ 2

E

{
‖v(k)‖2

}

=
∑

1≤i< j≤M

E

{
fT
i j (k)P(k + 1)fi j (k)

−Mw
(2)
i j xT

i j (k)�T P(k + 1)�xi j (k)

+gT
i j (k)P(k + 1)gi j (k)

+vT (k)BT
i j (k)P(k + 1)Bi j (k)v(k)

−2Mwi j fT
i j (k)P(k + 1)�xi j (k)

+2fT
i j (k)P(k + 1)Bi j (k)v(k)

−2Mwi j xT
i j (k)�T P(k + 1)Bi j (k)v(k)

−xT
i j (k)P(k)xi j (k)

+xT
i j (k)ET (k)E(k)xi j (k) − 2γ 2

M(M − 1)
‖v(k)‖2

}

=
∑

1≤i< j≤M

E

{
ξT

i j (k)
̄i j (k)ξi j (k)
}

(28)

where

ξi j (k) =
[
xT

i j (k) fT
i j (k) gT

i j (k) vT (k)
]T


̄i j (k) =

⎡

⎢
⎢
⎢
⎢
⎣

	̄
(1)
i j (k) −Mwi j �

T P(k + 1) 0 	
(3)
i j (k)

∗ P(k + 1) 0 	
(4)
i j (k)

∗ ∗ P(k + 1) 0
∗ ∗ ∗ 	

(5)
i j (k)

⎤

⎥
⎥
⎥
⎥
⎦

and 	̄
(1)
i j (k) = −Mw

(2)
i j �T P(k + 1)� − P(k) + ET (k)E(k).

Subsequently, using the notations in (27), we rewrite (4) as
[

xi j (k)
fi j (k)

]T [
Ũ1(k) Ũ2(k)

∗ I

] [
xi j (k)
fi j (k)

]
≤ 0. (29)

Similarly, (5) can also be rewritten as
[

xi j (k)
gi j (k)

]T [−V T (k)V (k) 0
∗ I

] [
xi j (k)
gi j (k)

]
≤ 0. (30)

Therefore, by noting (11), it follows from (28)–(30) that

E{V (k + 1, x(k + 1))} − E{V (k, x(k))}
+

∑

1≤i< j≤M

E{‖zi (k) − z j (k)‖2} − γ 2
E{‖v(k)‖2}

≤
∑

1≤i< j≤M

E

{
ξT

i j (k)
̄i j (k)ξi j (k)

−λ1(k)

[
xi j (k)
fi j (k)

]T [
Ũ1(k) Ũ2(k)

∗ I

] [
xi j (k)
fi j (k)

]

−λ2(k)

[
xi j (k)
gi j (k)

]T [−V T (k)V (k) 0
∗ I

] [
xi j (k)
gi j (k)

]}

=
∑

1≤i< j≤M

E

{
ξT

i j (k)
i j (k)ξi j (k)
}

≤ 0. (31)

Summing up (31) from 0 to N with respect to k yields
∑

1≤i< j≤M

‖zi − z j‖2[0 N] ≤ γ 2‖v‖2[0 N]

+ E{x T (0) (U ⊗ P(0)) x(0)}.
(32)

By considering the initial condition (10), the inequality (8)
follows from (32) immediately and, consequently, the proof of
this theorem is complete.

APPENDIX II

PROOF OF THEOREM 2

Proof: Let the real-valued function be

V (k, e(k)) = eT (k)P(k)e(k) + μ(k) (33)

where {P(k)}0≤k≤N+1 and {μ(k)}0≤k≤N+1 are the solutions
to the RLMIs (20) with the initial condition (19).

For notation simplicity, we denote

ζ(k) = [
eT (k) F̃T (k, e(k)) vT (k) GT (k, e(k) + x̂(k)) 1

]T

A(k) = [−K (k)C(k) + W ⊗ � I B(k) − K (k)D(k) 0 0
]

H = [
0 0 0 I 0

]
. (34)

Tedious but straightforward calculation shows that

E{V (k + 1, e(k + 1))} − E{V (k, e(k))}
+E{‖z̃(k)‖2} − γ 2

E{‖v(k)‖2}
= E

{(
A(k)ζ(k) + Hζ(k)ω(k)

)T

×P(k + 1)
(
A(k)ζ(k) + Hζ(k)ω(k)

)

−eT (k)P(k)e(k) + eT (k)ET
�(k)E�(k)e(k)

−γ 2vT (k)v(k) + μ(k + 1) − μ(k)
}

= E

{
ζ T (k)

(
�1(k) + AT (k)P(k + 1)A(k)

+HT P(k + 1)H
)
ζ(k)

}
(35)
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�2(k) =

⎡

⎢
⎢
⎢
⎢
⎣

�1(k) −ε1(k)Ũ2�(k) 0 0 ε2(k)V T
� (k)V�(k)x̂(k)

∗ −ε1(k)I 0 0 0
∗ ∗ −γ 2 I 0 0
∗ ∗ ∗ −ε2(k)I 0
∗ ∗ ∗ ∗ �4(k)

⎤

⎥
⎥
⎥
⎥
⎦

.

where

�1(k)

=

⎡

⎢
⎢
⎢
⎢
⎣

−P(k) + ET
�(k)E�(k) 0 0 0 0

∗ 0 0 0 0
∗ ∗ −γ 2 I 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ μ(k + 1) − μ(k)

⎤

⎥
⎥
⎥
⎥
⎦

.

From (4) and (5), we have
[

e(k)

F̃(k, e(k))

]T [
Ũ1�(k) Ũ2�(k)

∗ I

] [
e(k)

F̃(k, e(k))

]
≤ 0 (36)

and
⎡

⎣
e(k)

G(k, e(k) + x̂(k))
1

⎤

⎦

T

×
⎡

⎣
−V T

� (k)V�(k) 0 −V T
� (k)V�(k)x̂(k)

∗ I 0
∗ ∗ −x̂ T (k)V T

� (k)V�(k)x̂(k)

⎤

⎦

×
⎡

⎣
e(k)

G(k, e(k) + x̂(k))
1

⎤

⎦ ≤ 0

(37)

respectively.
By considering (35) and (37), we can obtain

E{V (k + 1, e(k + 1))} − E{V (k, e(k))} + E{‖z̃(k)‖2}
−γ 2

E{‖v(k)‖2}

≤ E

⎧
⎨

⎩
ζ T (k)

(
�1(k) + AT (k)P(k + 1)A(k)

+HT P(k + 1)H
)
ζ(k)

−ε1(k)

[
e(k)

F̃(k, e(k))

]T [
Ũ1�(k) Ũ2�(k)

∗ I

] [
e(k)

F̃(k, e(k))

]

−ε2(k)

⎡

⎣
e(k)

G(k, e(k) + x̂(k))
1

⎤

⎦

T

×
⎡

⎣
−V T

� (k)V�(k) 0 −V T
� (k)V�(k)x̂(k)

∗ I 0
∗ ∗ −x̂ T (k)V T

� (k)V�(k)x̂(k)

⎤

⎦

×
⎡

⎣
e(k)

G(k, e(k) + x̂(k))
1

⎤

⎦

⎫
⎬

⎭

= E

{
ζ T (k)

(
�2(k) + AT (k)P(k + 1)A(k)

+HT P(k + 1)H
)
ζ(k)

}
, (38)

where �2(k) is shown at the top of the page.

By using the Schur complement formula and noting (20),
we can easily obtain from (38)

E{V (k + 1, e(k + 1))} − E{V (k, e(k))} + E{‖z̃(k)‖2}
− γ 2

E{‖v(k)‖2} ≤ 0.
(39)

Then, the rest of this paper can be easily accomplished by
following the methods used in the proof of Theorem 1 and is
therefore omitted.
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