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Sampled-Data Synchronization Control of Dynamical
Networks with Stochastic Sampling

Bo Shen, Zidong Wang and Xiaohui Liu

Abstract—This paper is concerned with the sampled-data syn-

chronization control problem for a class of dynamical network-

s. The sampling period considered here is assumed to be time-

varying that switches between two different values in a random

way with given probability. The addressed synchronization con-

trol problem is first formulated as an exponentially mean-square

stabilization problem for a new class of dynamical networks that

involve both the multiple probabilistic interval delays (MPID-

s) and the sector-bounded nonlinearities (SBNs). Then, a novel

Lyapunov functional is constructed to obtain sufficient conditions

under which the dynamical network is exponentially mean-square

stable. Both Gronwall’s inequality and Jenson integral inequal-

ity are utilized to substantially simplify the derivation of the

main results. Subsequently, a set of sampled-data synchroniza-

tion controllers is designed in terms of the solution to certain

matrix inequalities that can be solved effectively by using avail-

able software. Finally, a numerical simulation example is em-

ployed to show the effectiveness of the proposed sampled-data

synchronization control scheme.

Keywords— Dynamical networks; Synchronization control;

Sampled-data control; Stochastic sampling; Gronwall’s inequali-

ty; Jenson integral inequality.

I. Introduction

Complex networks have recently received much attention due
to their extensive applications in both science and engineering
such as Internet, World Wide Web, food webs, electric power
grids, cellular and metabolic networks, scientific citation net-
works, social networks, etc. In the real world, there exist a num-
ber of classes of networks in which the state of each node evolves
asynchronously. Therefore, for such asynchronous networks, it
is of great significance to investigate whether there exist con-
trollers that can synchronize all the nodes and, if such controller-
s exist, how to actually design them. The synchronization prob-
lem has recently been paid a great deal of efforts and some effec-
tive synchronization control schemes have been proposed for a
variety of non-synchronous networks [1,6,15,17,18,20,21,23,25].

With the rapid development of high-speed computers, mod-
ern control systems tend to be controlled by digital controllers,
i.e., only the samples of the control input signals at discrete time
instants will be employed. A crucial issue arose here is that the
variation of sampling periods may drastically deteriorate the de-
sired performance of controlled systems under investigation. As
such, it is of great importance to investigate 1) how the consid-
ered system is affected by the controller based on sampled-data;
and 2) how to design a sampled-data controller to guarantee the
desired performance of controlled system. In fact, the sampled-
data control problem has been a research focus for nearly three
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decades and numerous results have been reported in the liter-
ature [2, 5, 22]. Recently, with the ever developing techniques
for tackling time delays that frequently occur in various engi-
neering systems (see e.g. [3, 8, 10, 12–14]), an arguably popular
approach to dealing with sampled-data control problems, which
has been proposed in [8], is to transform the sampling period
into a certain time-delay with finite bound. By using such an
approach, the sampled-data analysis problem amounts to the
corresponding problem for a time delayed system. In this re-
gard, the sampled-data H∞ control problem has been thorough-
ly investigated in [9] for sampled-data systems with stochastic
sampling periods.

Apparently, in nowadays digitalized world, it is of both the-
oretical significance and practical importance to analyze how a
digitalized control signal would influence the synchronization
behavior of a continuous-time dynamical network. In other
words, there is a vital need to investigate the sampled-data syn-
chronization for dynamical networks. Unfortunately, although
sampled-data control technologies have been developed relative-
ly well in control theory, the particular sampled-data synchro-
nization problem for dynamical networks has so far received very
little attention due mainly to the mathematical complexity. In-
deed, the essential difficulties would be 1) how to handle the dy-
namical network itself in terms of the couplings, nonlinearities
and external disturbances; 2) how to deal with the stochastic
sampling by quantifying the its impact on the synchronization
in terms of the sampling occurrence probability; and 3) how to
actually design a set of easy-to-implement sampled-data con-
trollers in order to synchronize the dynamical network especially
when the original dynamical network is unstable. It is, there-
fore, the main aim of this paper to challenge the sampled-data
synchronization problem for dynamical networks by overcoming
the aforementioned three major difficulties.

In this paper, the sampled-data synchronization control prob-
lem is addressed for a class of dynamical networks. The sam-
pling period considered here is time-varying that is allowed to
switch between two different values in a random way. Note
that the stochastic sampling problem typically occurs in a net-
worked environment where the signal sampling is subject to
unpredictable perturbations. Following the idea proposed in
[9,24], the addressed synchronization control problem is formu-
lated as a problem of stability analysis for a dynamical network
with multiple probabilistic interval delays (MPIDs) as well as
sector-bounded nonlinearities (SBNs). It is worth mentioning
that the MPIDs in the transformed dynamical model are quite
general which have not been addressed before. By utilizing
both the Gronwall’s inequality and the Jenson integral inequal-
ity, sufficient conditions are derived under which the dynamical
network is exponentially mean-square stable. A numerical sim-
ulation example is exploited to demonstrate the effectiveness of
the proposed synchronization control scheme.

II. Problem Formulation and Preliminaries

Consider the following dynamical network consisting of N
coupled nodes of the form:

ẋi(t) = f(xi(t)) +

N∑
j=1

wijΓxj(t) + ui(t) (1)

for all i = 1, 2, · · · , N , where xi(t) ∈ Rn is the state vector of the
ith node and ui(t) ∈ Rn is the control input of the ith node. Γ =
diag{r1, r2, · · · , rn} is a matrix linking the jth state variable if
rj ̸= 0, and W = (wij)N×N is the coupled configuration matrix
of the network with wij ≥ 0 (i ̸= j) but not all zero. As usual,
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the coupling configuration matrix W = (wij)N×N is symmetric
(i.e., W = WT ) and satisfies

∑N
j=1 wij =

∑N
j=1 wji = 0 for all

i = 1, 2, · · · , N .
The nonlinear vector-valued function f : Rn → Rn is assumed

to be continuous and satisfy the following sector-bounded con-
dition [16]:

[f(x)− f(y)− U1(x− y)]T [f(x)− f(y)− U2(x− y)] ≤ 0 (2)

for all x, y ∈ Rn, where U1 and U2 are constant matrices of
appropriate dimensions. Note that the sector-like description
of the nonlinearities in (2) is more general than the usual Lip-
schitz functions. By adopting such a presentation, it would be
possible to reduce the conservatism of the main results caused
by quantifying the nonlinear functions via a matrix inequality
technique.

Denote by s(t) ∈ Rn the solution to the unforced isolate node
ṡ(t) = f(s(t)) and let the error vector be ei(t) = xi(t) − s(t).
Then, the error dynamics of network (1) can be easily obtained
as follows:

ėi(t) = f̃(xi(t), s(t)) +
N∑

j=1

wijΓej(t) + ui(t) (3)

for all i = 1, 2, · · · , N , where f̃(xi(t), s(t)) = f(xi(t))− f(s(t)).
In this paper, the control input ui(t) is sampled before en-

tering the network (3), which gives rise to the sampled-data
analysis problem. More specifically, for every i (1 ≤ i ≤ N),
the control signal is generated by a zero-order hold function
with a sequence of hold times 0 = ti0 < ti1 < · · · < tik < · · ·

ui(t) = uid(t
i
k) = Kei(t

i
k), tik ≤ t < tik+1 (4)

where uid(·) is a discrete-time control signal, tik denotes the
sampling instant of ith node and satisfies limk→∞ tik = ∞, and
K is the feedback gain to be determined.

Noting that tik = t−(t−tik) := t−dik(t) holds for t
i
k ≤ t < tik+1,

the closed-loop error dynamics of the network is governed by

ėi(t) = f̃(xi(t), s(t)) +

N∑
j=1

wijΓej(t) +Kei(t− dik(t)),

tik ≤ t < tik+1, for all i = 1, 2, · · · , N .
By defining a function di(t) in the whole period of time [0,∞)

as follows:

di(t) = dik(t), tik ≤ t < tik+1, k = 0, 1, 2, · · · ,∞, (5)

the closed-loop error dynamics of the network defined on [0,∞)
can be derived immediately as follows:

ėi(t) = f̃(xi(t), s(t)) +

N∑
j=1

wijΓej(t) +Kei(t− di(t)) (6)

where i = 1, 2, · · · , N .
As discussed in the introduction, in a networked environment,

the sampling period itself might be a stochastic variable due to
unpredictable environmental changes. To reflect such a reality,
in this paper, the sampling period of each control signal is al-
lowed to randomly switch between two different values p1 and p2
with 0 < p1 < p2. Such a phenomena is referred to as stochastic
sampling [9], and can be represented by utilizing a set of random
variables ϱi (1 ≤ i ≤ N) with probabilities Prob{ϱi = p1} = βi

and Prob{ϱi = p2} = 1 − βi where βi ∈ [0, 1] is a known con-
stant.

Remark 1: In the control community, various sampling issues
have been raised and thoroughly studied, e.g. single-rate sam-
pling, multi-rate sampling and time-varying sampling. Note
that these sampling methods are customarily assumed to be
implemented in a deterministic way. However, in practical en-
gineering within a networked environment, the sampling pro-
cess itself might be subject to random abrupt changes, for ex-
ample, sudden environment changes, random sampler failures,
etc. In other words, the sampling periods may vary in a prob-
abilistic way. Such a phenomena of sampling process, namely,
stochastic sampling, has been largely overlooked in the area of
coupled dynamical networks. In this paper, we are only con-
cerned with the special case that the sampling period is allowed
to randomly switch between two different values. Our results
obtained later can be easily extended to more complex cases
where there are multiple sampling rates. Note that the stochas-
tic sampling problem has been addressed in [9] for sampled-data
control problem and in [7] for computer graphics problem.

From the definition of di(t), it is obvious that di(t) is a saw-
tooth function with randomness, and its value lies in the interval
[0, p2]. We take the interval [0, p2] apart into two interval [0, p1]
and (p1, p2], and introduce a new random variable γi(t):

γi(t) =

{
1, 0 ≤ di(t) < p1,
0, p1 ≤ di(t) ≤ p2.

According to [9], we have Prob{γi(t) = 1} = αi and
Prob{γi(t) = 0} = 1− αi where αi = βi +

p1
p2
(1− βi).

Following the idea proposed in [9,24], for every i (1 ≤ i ≤ N),
we define functions τ i

1 : R → [0, p1] and τ i
2 : R → [p1, p2] such

that

τ i
1(t) =

{
di(t), γi(t) = 1,
p1, γi(t) = 0,

τ i
2(t) =

{
p1, γi(t) = 1,

di(t), γi(t) = 0,

and rewrite the system (6) equivalently as

ėi(t) =f̃(xi(t), s(t)) +
N∑

j=1

wijΓej(t) + γi(t)Kei(t− τ i
1(t))

+ (1− γi(t))Kei(t− τ i
2(t))

(7)

for all i = 1, 2, · · · , N .
Furthermore, the coupled systems (7) can be converted into

the following compact form:

ė(t) =(W ⊗ Γ)e(t) + g(x(t), s(t)) +

N∑
i=1

γiCie(t− τ i
1(t))

+

N∑
i=1

(1− γi)Cie(t− τ i
2(t))

(8)

where

e(t) =
[
eT1 (t) · · · eTN (t)

]T
, x(t) =

[
xT
1 (t) · · · xT

N (t)
]T

,

g(x(t), s(t)) =
[
f̃T (x1(t), s(t)) · · · f̃T (xN (t), s(t))

]T
,

Ci = diag{0, · · · , 0︸ ︷︷ ︸
i−1

,K, 0, · · · , 0}.

Next, it follows from (2) that the nonlinear function
g(x(t), s(t)) satisfies[

e(t)
g(x(t), s(t))

]T [
Ũ1Λ Ũ2Λ

∗ I

] [
e(t)

g(x(t), s(t))

]
≤ 0 (9)
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where

Ũ1Λ =
UT

1ΛU2Λ + UT
2ΛU1Λ

2
, Ũ2Λ = −UT

1Λ + UT
2Λ

2
,

U1Λ = diagN{U1}, U2Λ = diagN{U2}.

The following definitions are needed for stating the problem
to be investigated.

Definition 1: The system (8) is said to be exponentially
mean-square stable if there exist two constants ν > 0 and δ > 0
such that

E{∥e(t)∥2} ≤ νe−δt sup
−2p2≤θ≤0

E{∥ϕ(θ)∥2}

where ϕ(·) is the initial function of system (8) defined as e(t) =
ϕ(t), t ∈ [−2p2, 0].

Definition 2: The dynamical network (1) is said to be expo-
nentially mean-square synchronized if the system (8) is expo-
nentially mean-square stable.

We are now ready to state the problem to be investigated.
In this paper, we aim to design a set of controllers of the for-
m (4) to achieve the exponential mean-square synchronization
for the dynamical network (1). In other words, we are interest-
ed in looking for a gain matrix K such that the system (8) is
exponentially mean-square stable.

III. Main Results

Let us start with stability analysis for the augmented system
(8). For the sake of simplicity, we denote

F(t) :=(W ⊗ Γ)e(t) + g(x(t), s(t)) +

N∑
i=1

αiCie(t− τ i
1(t))

+

N∑
i=1

(1− αi)Cie(t− τ i
2(t)),

Gi(t) :=
√

αi(1− αi)Ci(e(t− τ i
1(t))− e(t− τ i

2(t))).

Construct a Lyapunov functional as follows:

V (et) = V1(et) + V2(et) + V3(et) (10)

where

V1(et) = eT (t)Pe(t),

V2(et) =

∫ t

t−p1

eT (s)Q1e(s)ds+

∫ t−p1

t−p2

eT (s)Q2e(s)ds,

V3(et) =

N∑
i=1

∫ 0

−p1

∫ t

t+ω

(
FT (s)Zi

1F(s) +

N∑
j=1

GT
j (s)Zi

1Gj(s)
)
dsdω

+

N∑
i=1

∫ −p1

−p2

∫ t

t+ω

(
FT (s)Zi

2F(s) +

N∑
j=1

GT
j (s)Zi

2Gj(s)
)
dsdω,

in which Q1 > 0, Q2 > 0, Zi
1 > 0 Zi

2 > 0 (1 ≤ i ≤ N), and
P > 0 are positive definite matrices to be determined.

Define the infinitesimal operator L of V (et) as follows:

LV (et) = lim
∆→0+

1

∆

{
E{V (et+∆)|et} − V (et)

}
. (11)

The following lemma provides a sufficient condition to guar-
antee the exponential mean-square stability of the system (8).

Lemma 1: Let the matrices P > 0, Q1 > 0, Q2 > 0, Zi
1 > 0,

Zi
2 > 0 (1 ≤ i ≤ N) and K be given. For the Lyapunov

functional defined in (10), if there exists a scalar ε > 0 such
that

E{LV (et)} < −εE{∥e(t)∥2}, (12)

then the augmented system (8) is exponentially means-square
stable.

Proof: From the definition of Lyapunov functional (10),
we have

V (et)

≤λmax(Q1)

∫ t

t−p1

∥e(s)∥2ds+ λmax(Q2)

∫ t−p1

t−p2

∥e(s)∥2ds

+λmax(P )∥e(t)∥2 +
N∑
i=1

(
p1λmax(Z

i
1) + (p2 − p1)λmax(Z

i
2)
)

×
∫ t

t−p2

(
∥F(s)∥2 +

N∑
j=1

∥Gj(s)∥2
)
ds. (13)

In order to estimate the upper bound of the nonlinear function
g(x(t), s(t)), we rewrite it as

g(x(t), s(t)) =
U1Λ + U2Λ

2
e(t) + g̃(x(t), s(t))

where g̃(x(t), s(t)) satisfies ∥g̃(x(t), s(t))∥2 ≤ ∥U1Λ−U2Λ
2

e(t)∥2.
Denoting c1 = 1

2

(
∥U1Λ + U2Λ∥2 + ∥U1Λ − U2Λ∥2

)
, we have

∥g(x(t), s(t))∥2 ≤ c1∥e(t)∥2, and therefore it follows that∫ t

t−p2

(
∥F(s)∥2 +

N∑
j=1

∥Gj(s)∥2
)
ds ≤ c2 sup

t−2p2≤θ≤t
{∥e(θ)∥2} (14)

where

c2 =4p2
(
∥W ⊗ Γ∥2 + c1 +N

N∑
i=1

∥αiCi∥2

+N

N∑
i=1

∥(1− αi)Ci∥2 +
N∑
i=1

∥
√

αi(1− αi)Ci∥2
)
.

Substituting (14) into (13) yields

a1∥e(t)∥2 ≤ V (et) ≤ a2(2 + p2) sup
t−2p2≤θ≤t

{∥e(θ)∥2} (15)

where

a1 =λmin(P ),

a2 =max

{
λmax(P ), λmax(Q1), λmax(Q2),

c2

N∑
i=1

(
p1λmax(Z

i
1) + (p2 − p1)λmax(Z

i
2)
)}

.

Noticing (12) and (15), we have

E{V (et)} = E{V (e0)}+ E
{∫ t

0

LV (es)ds

}
≤a2(2 + p2) sup

−2p2≤θ≤0
E{∥ϕ(θ)∥2} −

∫ t

0

εE{∥e(s)∥2}ds.

Moreover, by considering V (et) ≥ a1∥e(t)∥2, we obtain

E{∥e(t)∥2} ≤ a2(2 + p2)

a1
sup

−2p2≤θ≤0
E{∥ϕ(θ)∥2}

−
∫ t

0

ε

a1
E{∥e(s)∥2}ds.
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Finally, it follows from the Gronwall’s inequality [19] that

E{∥e(t)∥2} ≤ a2(2 + p2)

a1
e
− ε

a1
t

sup
−2p2≤θ≤0

E{∥ϕ(θ)∥2}

which, from Definition 1, means that the augmented system (8)
is exponentially mean-square stable. The proof is complete.

Remark 2: Note that, in the proof of Lemma 1, the Gronwal-
l’s inequality is employed to prove the exponential mean-square
stability for a time-delay system under the condition (12). Such
an approach is different from the conventional ones in the litera-
ture, which simplifies the procedure for proving the exponential
mean-square stability.

The following lemma will be used in deriving our main results.
Lemma 2: [11] For any constant matrix M ∈ Rm×m, M =

MT > 0, scalar p > 0, vector function x : [0, p] → Rm such that
the integration in the sequel is well defined, the following holds

p

∫ p

0

xT (s)Mx(s)ds ≥
(∫ p

0

x(s)ds
)T

M
(∫ p

0

x(s)ds
)
.

By resorting to Lemma 1 and Lemma 2, we present a sta-
bility condition for the augmented system (8) in the following
theorem.

Theorem 1: For a given a controller gain matrix K, the aug-
mented system (8) is exponentially mean-square stable if there
exist matrices P > 0, Q1 > 0, Q2 > 0, Zi

1 > 0, Zi
2 > 0

(1 ≤ i ≤ N) and a scalar λ > 0 satisfying

Θ11 Θ12 0 PC⃗

∗ − 2
p1
Ẑ1

1
p1
Z̃T

1 0

∗ ∗ Θ33
1

p2−p1
Z̃2

∗ ∗ ∗ − 2
p2−p1

Ẑ2

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 Θ16 WT ⊗ ΓT 0

0 0 C̃T ĈT

0 0 0 0
1

p2−p1
Z̃T

2 0 C⃗T −ĈT

Θ55 0 0 0
∗ −λI I 0
∗ ∗ −R−1 0

∗ ∗ ∗ −R̂−1


< 0

(16)

where

Θ11 = P (W ⊗ Γ) + (W ⊗ Γ)TP +Q1 −
1

p1

N∑
i=1

Zi
1 − λŨ1Λ,

Θ12 = PC̃ +
1

p1
Z̃1, Θ16 = P − λŨ2Λ,

Θ33 = −Q1 +Q2 −
1

p1

N∑
i=1

Zi
1 −

1

p2 − p1

N∑
i=1

Zi
2,

Θ55 = −Q2 −
1

p2 − p1

N∑
i=1

Zi
2, R =

N∑
i=1

(
p1Z

i
1 + (p2 − p1)Z

i
2

)
,

R̂ = diagN{R}, C̃ =
[
α1C1 · · · αNCN

]
,

C⃗ =
[
(1− α1)C1 · · · (1− αN )CN

]
,

Ĉ = diag{
√

α1(1− α1)C1, · · · ,
√

αN (1− αN )CN},

Z̃1 =
[
Z1

1 · · · ZN
1

]
, Ẑ1 = diag{Z1

1 , · · · , ZN
1 },

Z̃2 =
[
Z1

2 · · · ZN
2

]
, Ẑ2 = diag{Z1

2 , · · · , ZN
2 }.

(17)

Proof: Consider the Lyapunov functional defined in (10)
and calculate E{LV (et)} along the dynamics of system (8) as
follows:

E{LV (et)}

=E
{
eT (t)Q1e(t)− eT (t− p1)(Q1 −Q2)e(t− p1)

− eT (t− p2)Q2e(t− p2) + 2eT (t)PF(t)

+ FT (t)

N∑
i=1

(
p1Z

i
1 + (p2 − p1)Z

i
2

)
F(t)

+
N∑

j=1

GT
j (t)

N∑
i=1

(
p1Z

i
1 + (p2 − p1)Z

i
2

)
Gj(t)

−
N∑
i=1

∫ t

t−p1

(
FT (s)Zi

1F(s) +
N∑

j=1

GT
j (s)Zi

1Gj(s)
)
ds

−
N∑
i=1

∫ t−p1

t−p2

(
FT (s)Zi

2F(s) +

N∑
j=1

GT
j (s)Zi

2Gj(s)
)
ds

}
.

(18)

It is not difficult to verify that

−E
{ N∑

i=1

∫ t

t−p1

(
FT (s)Zi

1F(s) +

N∑
j=1

GT
j (s)Zi

1Gj(s)
)
ds

}

= −E
{ N∑

i=1

∫ t

t−p1

ėT (s)Zi
1ė(s)ds

}
, (19)

−E
{ N∑

i=1

∫ t−p1

t−p2

(
FT (s)Zi

2F(s) +

N∑
j=1

GT
j (s)Zi

2Gj(s)
)
ds

}

= −E
{ N∑

i=1

∫ t−p1

t−p2

ėT (s)Zi
2ė(s)ds

}
. (20)

Then, it follows from Lemma 2 that

−E
{ N∑

i=1

∫ t

t−p1

ėT (s)Zi
1ė(s)ds

}
≤ E

{
− 1

p1

N∑
i=1

(
e(t)− e(t− τ i

1(t))
)T

Zi
1

(
e(t)− e(t− τ i

1(t))
)

− 1

p1

N∑
i=1

(
e(t− τ i

1(t))− e(t− p1)
)T

Zi
1

×
(
e(t− τ i

1(t))− e(t− p1)
)}

, (21)

and

−E
{ N∑

i=1

∫ t−p1

t−p2

ėT (s)Zi
2ė(s)ds

}
≤ E

{
− 1

p2 − p1

N∑
i=1

(
e(t− p1)− e(t− τ i

2(t))
)T

Zi
2

×
(
e(t− p1)− e(t− τ i

2(t))
)
− 1

p2 − p1

N∑
i=1

(
e(t− τ i

2(t))

−e(t− p2)
)T

Zi
2

(
e(t− τ i

2(t))− e(t− p2)
)}

. (22)

Substituting (19)-(22) into (18) yields

E{LV (et)} ≤ E
{
ξT (t)Φ̄1ξ(t) + FT (t)RF(t) +

N∑
j=1

GT
j (t)RGj(t)

}



5

where

ξ(t) =
[
eT (t) eTτ1(t) eT (t− p1) eTτ2(t)

eT (t− p2) gT (x(t), s(t))
]T

,

eτ1(t) =
[
eT (t− τ1

1 (t)) · · · eT (t− τN
1 (t))

]T
,

eτ2(t) =
[
eT (t− τ1

2 (t)) · · · eT (t− τN
2 (t))

]T
,

Φ̄1 =

Θ̄11 Θ12 0 PC⃗ 0 P

∗ − 2
p1
Ẑ1

1
p1
Z̃T

1 0 0 0

∗ ∗ Θ33
1

p2−p1
Z̃2 0 0

∗ ∗ ∗ − 2
p2−p1

Ẑ2
1

p2−p1
Z̃T

2 0

∗ ∗ ∗ ∗ Θ55 0
∗ ∗ ∗ ∗ ∗ 0


,

Θ̄11 = P (W ⊗ Γ) + (W ⊗ Γ)TP +Q1 −
1

p1

N∑
i=1

Zi
1.

(23)

Considering the inequality (9), we have

E{LV (et)}

≤ E
{
ξT (t)Φ̄1ξ(t) + FT (t)RF(t) +

N∑
j=1

GT
j (t)RGj(t)

−λ

[
e(t)

g(x(t), s(t))

]T [
Ũ1Λ Ũ2Λ

∗ I

] [
e(t)

g(x(t), s(t))

]}
= E

{
ξT (t)Φ̄2ξ(t) + FT (t)RF(t) +

N∑
j=1

GT
j (t)RGj(t)

}

where

Φ̄2 =



Θ11 Θ12 0 PC⃗ 0 Θ16

∗ − 2
p1
Ẑ1

1
p1
Z̃T

1 0 0 0

∗ ∗ Θ33
1

p2−p1
Z̃2 0 0

∗ ∗ ∗ − 2
p2−p1

Ẑ2
1

p2−p1
Z̃T

2 0

∗ ∗ ∗ ∗ Θ55 0
∗ ∗ ∗ ∗ ∗ −λI


.

By using the Schur complement [4], we obtain immediately
from (16) that E{LV (et)} < 0 which implies that there exist-
s a sufficiently small constant ε > 0 such that E{LV (et)} <
−εE{∥e(t)∥2}. To this end, it follows immediately from Lemma
1 that the exponential mean-square stability of the augment-
ed system (8) is guaranteed and, therefore, the proof of this
theorem is complete.

It is worth mentioning that, in the proof of Theorem 1, the
Jenson integral inequality is employed to derive a stability cri-
terion for the dynamic system (8) with MPIDs and SBNs. The
usage of the Jenson integral inequality is mainly to simplify the
proof without causing much conservatism. In what follows, we
shall deal with the design problem of controllers that make the
dynamical network (1) exponentially mean-square synchronized
for all probabilistic sampling periods. According to the stabili-
ty criterion given in Theorem 1, the following theorem is easily
accessible.

Theorem 2: The dynamical network (1) is exponentially
mean-square synchronized by controllers of the form (4) for
all probabilistic sampling periods if there exist matrices P =
diagN{P̄} > 0, X, Q1 > 0, Q2 > 0, Zi

1 > 0, Zi
2 > 0 (1 ≤ i ≤ N),

and a scalar λ > 0 satisfying

Θ11 Θ̄12 0 Y⃗ 0

∗ − 2
p1
Ẑ1

1
p1
Z̃T

1 0 0

∗ ∗ Θ33
1

p2−p1
Z̃2 0

∗ ∗ ∗ − 2
p2−p1

Ẑ2
1

p2−p1
Z̃T

2

∗ ∗ ∗ ∗ Θ55

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Θ16 (WT ⊗ ΓT )P 0

0 Ỹ T Ŷ T

0 0 0

0 Y⃗ T −Ŷ T

0 0 0
−λI P 0
∗ −2P +R 0

∗ ∗ −2P̂ + R̂


< 0

(24)

where

Θ̄12 = Ỹ +
1

p1
Z̃1, Ỹ =

[
α1Y1 · · · αNYN

]
,

Y⃗ =
[
(1− α1)Y1 · · · (1− αN )YN

]
,

Ŷ = diag{
√

α1(1− α1)Y1, · · · ,
√

αN (1− αN )YN},

Yi = diag{0, · · · , 0︸ ︷︷ ︸
i−1

, X, 0, · · · , 0}, P̂ = diagN{P},

and R, R̂, Ẑ1, Z̃1, Ẑ2, Z̃2, Θ11, Θ16, Θ33, and Θ55 are defined in
Theorem 1. Furthermore, if the linear matrix inequality (LMI)
(24) is solvable, the desired controller gain is given as K =
P̄−1X.

Remark 3: First, it can be seen from (24) that, if one of the
sampling periods p1 and p2 (p1 < p2) approaches infinity, the
LMI problem would have no feasible solution. In most cases,
the sampling periods p1 and p2 take deterministic values, and
this is helpful for the solvability of the LMI problem. Second,
due to the existence of the coupled term

∑N
j=1 wijΓej(t), the

conditions in Theorems 1 and 2 are more feasible when the cou-
pling strength wij is getting larger. Moreover, the parameters
U1 and U2, which are used to characterize the nonlinearities in
the network, also affect the conditions in Theorem 2. The less
is U2−U1, the less is E{LV (et)}, which is better for the system
(8) to maintain its stability.

IV. An Illustrative Example

Consider a dynamical network (1) with three nodes. The
coupling configuration matrix W = (wij)3×3 is given by wij =
−2, i = j, wij = 1, i ̸= j, and the inner-coupling matrix is set
as Γ = I. The nonlinear function in the dynamical network (1)
is chosen as

f(xi(t)) =

[
−0.5xi1(t) + tanh(0.2xi1(t)) + 0.2xi2(t)

0.65xi2(t)− tanh(0.45xi2(t))

]
.

It is easy to verify that above nonlinear function f(·) satisfies
the sector-bounded condition (2) with

U1 =

[
−0.5 0.2
0 0.65

]
, U2 =

[
−0.3 0.2
0 0.2

]
.

In this example, the sampling periods are taken as p1 = 0.02
and p2 = 0.04, and the probabilities are set as β1 = 0.75, β2 =
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Fig. 1. State x11 of uncontrolled and controlled node 1
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Fig. 2. State x12 of uncontrolled and controlled node 1

0.8, and β3 = 0.7. By using the Matlab (with YALMIP 3.0 and
SeDuMi 1.1), we solve LMI (24) and obtain the parameter of
the desired controllers as follows:

K = P̄−1X =

[
0.1312 −0.1699
−0.0411 −0.6978

]
. (25)

According to Theorem 2, the set of controllers (4) with the pa-
rameter given by (25) can achieve the exponential mean-square
synchronization of the considered dynamical network. Simula-
tion results are shown in Figs. 1-2, from which it can be observed
that 1) the state trajectories of all the three nodes (we only list
the plots for the first node to save space) deviate from one of
the isolate node drastically in the case that there is no con-
troller to the dynamical network; and 2) all state trajectories of
the controlled network can converge to the one governed by the
identical isolate node, which confirm our main results.

V. Conclusions

In this paper, the sampled-data synchronization control prob-
lem has been addressed for a class of dynamical networks with
stochastic sampling. The addressed synchronization control
problem has first been transformed to the exponential mean-
square stability analysis problem for a dynamic system with

MPIDs as well as SBNs. By constructing a new Lyapunov func-
tional and employing Gronwall’s inequality and Jenson integral
inequality, a sufficient condition has been obtained to guarantee
the exponential mean-square stability of the considered dynamic
system and the set of sampled-data synchronization controllers
has been designed. In our future work, we will further consid-
er the problems for randomly occurring nonlinearities and ran-
domly occurring network topology, which would reflect more
features of the complexity.
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