2,044 research outputs found

    Mutations in PNKD causing paroxysmal dyskinesia alters protein cleavage and stability.

    Get PDF
    Paroxysmal non-kinesigenic dyskinesia (PNKD) is a rare autosomal dominant movement disorder triggered by stress, fatigue or consumption of either alcohol or caffeine. Attacks last 1-4 h and consist of dramatic dystonia and choreoathetosis in the limbs, trunk and face. The disease is associated with single amino acid changes (A7V or A9V) in PNKD, a protein of unknown function. Here we studied the stability, cellular localization and enzymatic activity of the PNKD protein in cultured cells and transgenic animals. The N-terminus of the wild-type (WT) long PNKD isoform (PNKD-L) undergoes a cleavage event in vitro, resistance to which is conferred by disease-associated mutations. Mutant PNKD-L protein is degraded faster than the WT protein. These results suggest that the disease mutations underlying PNKD may disrupt protein processing in vivo, a hypothesis supported by our observation of decreased cortical Pnkd-L levels in mutant transgenic mice. Pnkd is homologous to a superfamily of enzymes with conserved β-lactamase domains. It shares highest homology with glyoxalase II but does not catalyze the same reaction. Lower glutathione levels were found in cortex lysates from Pnkd knockout mice versus WT littermates. Taken together, our results suggest an important role for the Pnkd protein in maintaining cellular redox status

    Long-Lived Double-Barred Galaxies From Pseudo-Bulges

    Get PDF
    A large fraction of barred galaxies host secondary bars that are embedded in their large-scale primary counterparts. These are common also in gas poor early-type barred galaxies. The evolution of such double-barred galaxies is still not well understood, partly because of a lack of realistic NN-body models with which to study them. Here we report a new mechanism for generating such systems, namely the presence of rotating pseudo-bulges. We demonstate with high mass and force resolution collisionless NN-body simulations that long-lived secondary bars can form spontaneously without requiring gas, contrary to previous claims. We find that secondary bars rotate faster than primary ones. The rotation is not, however, rigid: the secondary bars pulsate, with their amplitude and pattern speed oscillating as they rotate through the primary bars. This self-consistent study supports previous work based on orbital analysis in the potential of two rigidly rotating bars. The pulsating nature of secondary bars may have important implications for understanding the central region of double-barred galaxies.Comment: Paper submitted to ApJ

    Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia.

    Get PDF
    Paroxysmal nonkinesigenic dyskinesia (PNKD) is an autosomal dominant episodic movement disorder. Patients have episodes that last 1 to 4 hours and are precipitated by alcohol, coffee, and stress. Previous research has shown that mutations in an uncharacterized gene on chromosome 2q33-q35 (which is termed PNKD) are responsible for PNKD. Here, we report the generation of antibodies specific for the PNKD protein and show that it is widely expressed in the mouse brain, exclusively in neurons. One PNKD isoform is a membrane-associated protein. Transgenic mice carrying mutations in the mouse Pnkd locus equivalent to those found in patients with PNKD recapitulated the human PNKD phenotype. Staining for c-fos demonstrated that administration of alcohol or caffeine induced neuronal activity in the basal ganglia in these mice. They also showed nigrostriatal neurotransmission deficits that were manifested by reduced extracellular dopamine levels in the striatum and a proportional increase of dopamine release in response to caffeine and ethanol treatment. These findings support the hypothesis that the PNKD protein functions to modulate striatal neuro-transmitter release in response to stress and other precipitating factors

    DAAM1 Is a Formin Required for Centrosome Re-Orientation during Cell Migration

    Get PDF
    BACKGROUND: Disheveled-associated activator of morphogenesis 1 (DAAM1) is a formin acting downstream of Wnt signaling that is important for planar cell polarity. It has been shown to promote proper cell polarization during embryonic development in both Xenopus and Drosophila. Importantly, DAAM1 binds to Disheveled (Dvl) and thus functions downstream of the Frizzled receptors. Little is known of how DAAM1 is localized and functions in mammalian cells. We investigate here how DAAM1 affects migration and polarization of cultured cells and conclude that it plays a key role in centrosome polarity. METHODOLOGY/PRINCIPAL FINDINGS: Using a specific antibody to DAAM1, we find that the protein localizes to the acto-myosin system and co-localizes with ventral myosin IIB-containing actin stress fibers. These fibers are particularly evident in the sub-nuclear region. An N-terminal region of DAAM1 is responsible for this targeting and the DAAM1(1-440) protein can interact with myosin IIB fibers independently of either F-actin or RhoA binding. We also demonstrate that DAAM1 depletion inhibits Golgi reorientation in wound healing assays. Wound-edge cells exhibit multiple protrusions characteristic of unpolarized cell migration. Finally, in U2OS cells lines stably expressing DAAM1, we observe an enhanced myosin IIB stress fiber network which opposes cell migration. CONCLUSIONS/SIGNIFICANCE: This work highlights the importance of DAAM1 in processes underlying cell polarity and suggests that it acts in part by affecting the function of acto-myosin IIB system. It also emphasizes the importance of the N-terminal half of DAAM1. DAAM1 depletion strongly blocks centrosomal re-polarization, supporting the concept that DAAM1 signaling cooperates with the established Cdc42 associated polarity complex. These findings are also consistent with the observation that ablation of myosin IIB but not myosin IIA results in polarity defects downstream of Wnt signaling. The structure-function analysis of DAAM1 in cultured cells parallels more complex morphological events in the developing embryo

    Protein-tyrosine phosphatase SHP2 is positively linked to proteinase-activated receptor 2-mediated mitogenic pathway.

    Get PDF
    Proteinase-activated receptor-2 (PAR2), a new member of family of the G protein-coupled receptors, is activated by proteolytic cleavage of its extracellular amino terminus, a mechanism similar to that used by the thrombin receptor. It has been suggested that PAR2 has a potential role in the late phases of the acute inflammatory response and in tissue repair and/or skin-related disorders. Here we demonstrate that the agonist peptide (SLIGRL) stimulated c-fos-mediated mitogenic activation and tyrosine phosphorylation of cellular proteins. One of the tyrosine-phosphorylated proteins was identified as an Src homology-2 domain-containing protein-tyrosine phosphatase, SHP2. The stimulatory effect of the agonist peptide on early gene transcription was markedly blocked by pertussis toxin treatment whereas the induced tyrosine phosphorylation of SHP2 was completely abolished by the drug. More importantly, while expression of wild-type SHP2 enhanced the agonist-stimulatory mitogenic activity, overexpression of a catalytically inactive mutant of SHP2 strongly suppressed the stimulatory effect of the agonist peptide on both early gene transcription and DNA synthesis. These results suggest that SHP2 acts as a positive regulator linked to the PAR2-mediated mitogenic pathway coupled to a pertussis toxin-sensitive heterotrimeric G protein. Demonstration of SHP2 as a positive mediator in a G protein-coupled, receptor-mediated signaling adds to our understanding of the function of both SHP2 and PAR2 in the signaling pathway
    corecore