30 research outputs found

    Dietary choline supplementation attenuated high-fat diet-induced inflammation through regulation of lipid metabolism and suppression of NFKB activation in juvenile black seabream (Acanthopagrus schlegelii)

    Get PDF
    The present study aimed to investigate whether dietary choline can regulate lipid metabolism and suppress NFĪŗB activation and, consequently, attenuate inflammation induced by a high-fat diet in black sea bream (Acanthopagrus schlegelii). An 8-week feeding trial was conducted on fish with an initial weight of 8Ā·16 Ā± 0Ā·01 g. Five diets were formulated: control, low-fat diet (11 %); HFD, high-fat diet (17 %); and HFD supplemented with graded levels of choline (3, 6 or 12 g/kg) termed HFD + C1, HFD + C2 and HFD + C3, respectively. Dietary choline decreased lipid content in whole body and tissues. Highest TAG and cholesterol concentrations in serum and liver were recorded in fish fed the HFD. Similarly, compared with fish fed the HFD, dietary choline reduced vacuolar fat drops and ameliorated HFD-induced pathological changes in liver. Expression of genes of lipolysis pathways were up-regulated, and genes of lipogenesis down-regulated, by dietary choline compared with fish fed the HFD. Expression of nfĪŗb and pro-inflammatory cytokines in liver and intestine was suppressed by choline supplementation, whereas expression of anti-inflammatory cytokines was promoted in fish fed choline-supplemented diets. In fish that received lipopolysaccharide to stimulate inflammatory responses, the expression of nfĪŗb and pro-inflammatory cytokines in liver, intestine and kidney were all down-regulated by dietary choline compared with the HFD. Overall, the present study indicated that dietary choline had a lipid-lowering effect, which could protect the liver by regulating intrahepatic lipid metabolism, reducing lipid droplet accumulation and suppressing NFĪŗB activation, consequently attenuating HFD-induced inflammation in A. schlegelii

    Galaxy Light profile neural Networks (GaLNets). II. Bulge-Disc decomposition in optical space-based observations

    Full text link
    Bulge-disk (B-D) decomposition is an effective diagnostic to characterize the galaxy morphology and understand its evolution across time. So far, high-quality data have allowed detailed B-D decomposition to redshift below 0.5, with limited excursions over small volumes at higher redshifts. Next-generation large sky space surveys in optical, e.g. from the China Space Station Telescope (CSST), and near-infrared, e.g. from the space EUCLID mission, will produce a gigantic leap in these studies as they will provide deep, high-quality photometric images over more than 15000 deg2 of the sky, including billions of galaxies. Here, we extend the use of the Galaxy Light profile neural Network (GaLNet) to predict 2-S\'ersic model parameters, specifically from CSST data. We simulate point-spread function (PSF) convolved galaxies, with realistic B-D parameter distributions, on CSST mock observations to train the new GaLNet and predict the structural parameters (e.g. magnitude, effective radius, Sersic index, axis ratio, etc.) of both bulge and disk components. We find that the GaLNet can achieve very good accuracy for most of the B-D parameters down to an rr-band magnitude of 23.5 and redshift āˆ¼\sim1. The best accuracy is obtained for magnitudes, implying accurate bulge-to-total (B/T) estimates. To further forecast the CSST performances, we also discuss the results of the 1-S\'ersic GaLNet and show that CSST half-depth data will allow us to derive accurate 1-component models up to rāˆ¼r\sim24 and redshift zāˆ¼\sim1.7

    Dietary Betaine Mitigates Hepatic Steatosis and Inflammation Induced by a High-Fat-Diet by Modulating the Sirt1/Srebp-1/Pparɑ Pathway in Juvenile Black Seabream (Acanthopagrus schlegelii)

    Get PDF
    The present study aimed to elucidate the mechanism of dietary betaine, as a lipid-lowering substance, on the regulation of lipid metabolism and inflammation in juvenile black seabream (Acanthopagrus schlegelii) fed a high fat diet. An 8-week feeding trial was conducted in black seabream with an initial weight of 8.39 Ā± 0.01g fed four isonitrogenous diets including Control, medium-fat diet (11%); HFD, high-fat diet (17%); and HFD supplemented with two levels (10 and 20 g/kg) of betaine, HFD+B1 and HFD+B2, respectively. SGR and FE in fish fed HFD+B2 were significantly higher than in fish fed HFD. Liver histology revealed that vacuolar fat droplets were smaller and fewer in bream fed HFD supplemented with betaine compared to fish fed HFD. Betaine promoted the mRNA and protein expression levels of silent information regulator 1 (Sirt1), up-regulated mRNA expression and protein content of lipid peroxisome proliferator-activated receptor alpha (pparĪ±), and down-regulated mRNA expression and protein content of sterol regulatory element-binding protein-1(srebp-1). Furthermore, the mRNA expression levels of anti-inflammatory cytokines in liver and intestine were up-regulated, while nuclear factor kB (nf-kb) and pro-inflammatory cytokines were down-regulated by dietary betaine supplementation. Likewise, in fish that received lipopolysaccharide (LPS) to stimulate inflammatory responses, the expression levels of mRNAs of anti-inflammatory cytokines in liver, intestine and kidney were up-regulated in fish fed HFD supplemented with betaine compared with fish fed HFD, while nf-kb and pro-inflammatory cytokines were down-regulated. This is the first report to suggest that dietary betaine could be an effective feed additive to alleviate hepatic steatosis and attenuate inflammatory responses in black seabream fed a high fat diet by modulating the Sirt1/Srebp-1/Pparɑ pathway

    Dietary fenofibrate attenuated high-fat-diet-induced lipid accumulation and inflammation response partly through regulation of pparĪ± and sirt1 in juvenile black seabream (Acanthopagrus schlegelii)

    Get PDF
    An 8-week feeding trail was conducted in Acanthopagrus schlegelii with an initial body weight of 8.34Ā±0.01g. Three isonitrogenous diets were formulated, (1) Control: medium-fat diet (12%); (2) HFD: high-fat diet (18%); (3) HFD+FF: high-fat diet with fenofibrate (0.15%). Liver histological analysis revealed that, compared to HFD, vacuolar fat drops were smaller and fewer in fish fed fenofibrate. Expression of lipid catabolism regulator peroxisome proliferator-activated receptor alpha (pparĪ±) was up-regulated by fenofibrate compared with HFD. In addition, fenofibrate significantly increased the expression level of silent information regulator 1 (sirt1). Meanwhil e, the expression level of anti-inflammatory cytokine interleukin 10 (il-10) in intestine was up-regulated, while pro-inflammatory cytokine interleukin 1Ī² (il-1Ī²) in liver and intestine were down-regulated by dietary fenofibrate supplementation. Overall, the present study indicated that fenofibrate reduced fat deposition and attenuated inflammation response caused by HFD partly through a pathway involving regulation of pparĪ± and sirt1

    Trends in template/fragment-free protein structure prediction

    Get PDF
    Predicting the structure of a protein from its amino acid sequence is a long-standing unsolved problem in computational biology. Its solution would be of both fundamental and practical importance as the gap between the number of known sequences and the number of experimentally solved structures widens rapidly. Currently, the most successful approaches are based on fragment/template reassembly. Lacking progress in template-free structure prediction calls for novel ideas and approaches. This article reviews trends in the development of physical and specific knowledge-based energy functions as well as sampling techniques for fragment-free structure prediction. Recent physical- and knowledge-based studies demonstrated that it is possible to sample and predict highly accurate protein structures without borrowing native fragments from known protein structures. These emerging approaches with fully flexible sampling have the potential to move the field forward

    <strong>Supplemental material</strong>

    No full text
    Ā Ā  Supplemental material</p

    Threshold Distributions of Phenylthiocarbamide (PTC) in the Chinese Population a

    Full text link
    The ability to taste phenylthiocarbamide (PTC) is a well-documented Mendelian trait. Mapping and cloning the gene(s) responsible for the PTC tasting ability would help to delineate the molecular basis for the variations in PTC tasting ability in humans and to shed new light on taste chemosensory functions. In view of the spectacular successes in genome science, the positional cloning strategy seems to be a feasible approach to the isolation of the gene(s) underlying the PTC tasting ability. As a first step toward mapping the gene(s), we collected PTC taste threshold data on 106 individuals, most of them being university students, in Shanghai, China. Using various parametric and nonparametric statistical methods, we have found that the data set is best described by a bimodal distribution. The frequency of PTC nontasters is estimated to be 10%. This is consistent with the view that the PTC nontasting ability follows a recessive mode of inheritance. Several authors had previously reported PTC data on Chinese living outside China. Our data are, to our knowledge, the first ever collected from the Chinese population within China.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71550/1/j.1749-6632.1998.tb10664.x.pd

    Study of the Technologies for Freeze Protection of Cooling Towers in the Solar System

    No full text
    A cooling tower is an important guarantee for the proper operation of a solar system. To ensure proper operation of the system and to maintain high-efficiency points, the cooling tower must operate year-round. However, freezing is a common problem that degrades the performance of cooling towers in winter. For example, the air inlet forms hanging ice, which clogs the air path, and the coil in closed cooling towers freezes and cracks, leading to water leakage in the internal circulation. This has become an intractable problem that affects the safety and performance of cooling systems in winter. To address this problem, three methods of freeze protection for cooling towers are studied: (a) the dry and wet mixing operation method&mdash;the method of selecting heat exchangers under dry operation at different environments and inlet water temperatures is presented. The numerical experiment shows that the dry and wet mixing operation method can effectively avoid ice hanging on the air inlet. (b) The engineering plastic capillary mats method&mdash;its freeze protection characteristics, thermal performance, and economics are studied, and the experiment result is that polyethylene (PE) can meet the demands of freeze protection. (c) The antifreeze fluid method&mdash;the cooling capacity of the closed cooling towers with different concentrations of glycol antifreeze fluid is numerically studied by analyzing the heat transfer coefficient ratio, the air volume ratio, the heat dissipation ratio, and the flow rate ratio. The addition of glycol will reduce the cooling capacity of the closed cooling tower

    Study of the Technologies for Freeze Protection of Cooling Towers in the Solar System

    No full text
    A cooling tower is an important guarantee for the proper operation of a solar system. To ensure proper operation of the system and to maintain high-efficiency points, the cooling tower must operate year-round. However, freezing is a common problem that degrades the performance of cooling towers in winter. For example, the air inlet forms hanging ice, which clogs the air path, and the coil in closed cooling towers freezes and cracks, leading to water leakage in the internal circulation. This has become an intractable problem that affects the safety and performance of cooling systems in winter. To address this problem, three methods of freeze protection for cooling towers are studied: (a) the dry and wet mixing operation methodā€”the method of selecting heat exchangers under dry operation at different environments and inlet water temperatures is presented. The numerical experiment shows that the dry and wet mixing operation method can effectively avoid ice hanging on the air inlet. (b) The engineering plastic capillary mats methodā€”its freeze protection characteristics, thermal performance, and economics are studied, and the experiment result is that polyethylene (PE) can meet the demands of freeze protection. (c) The antifreeze fluid methodā€”the cooling capacity of the closed cooling towers with different concentrations of glycol antifreeze fluid is numerically studied by analyzing the heat transfer coefficient ratio, the air volume ratio, the heat dissipation ratio, and the flow rate ratio. The addition of glycol will reduce the cooling capacity of the closed cooling tower
    corecore