81 research outputs found

    Nitrogen cycling and biosignatures in a hyperarid Mars analogue environment

    Get PDF
    This research was funded by European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement 678812) (to MWC). JS also acknowledges support from the China Scholarship Council (CSC).The hyperarid Atacama Desert is a unique Mars-analog environment with a large near-surface soil nitrate reservoir due to the lack of rainfall leaching for millennia. We investigated nitrogen (N) cycling and organic matter dynamics in this nitrate-rich terrestrial environment by analyzing the concentrations and isotopic compositions of nitrate, organic C, and organic N, coupled with microbial pathway-enzyme inferences, across a naturally occurring rainfall gradient. Nitrate deposits in sites with an annual precipitation of 15 mm annual precipitation. Metagenomic analyses suggest that the Atacama Desert harbors a unique biological nitrogen cycle driven by nitrifier denitrification, nitric oxide dioxygenase-driven alternative nitrification, and organic N loss pathways. Nitrate assimilation is the only nitrate consumption pathway available in the driest sites, although some hyperarid sites also support organisms with ammonia lyase- and nitric oxide synthase-driven organic N loss. Nitrifier denitrification is enhanced in the "transition zone" desert environments, which are generally hyperarid but see occasional large rainfall events, and shifts to nitric oxide dioxygenase-driven alternative nitrifications in wetter arid sites. Since extremophilic microorganisms tend to exploit all reachable nutrients, both N and O isotope fractionations during N transformations are reduced. These results suggest that N cycling on the more recent dry Mars might be dominated by nitrate assimilation that cycles atmospheric nitrate and exchanges water O during intermittent wetting, resulting stable isotope biosignatures could shift away from martian atmospheric nitrate endmember. Early wetter Mars could nurture putative life that metabolized nitrate with traceable paleoenvironmental isotopic markers similar to microbial denitrification and nitrification stored in deep subsurface.Publisher PDFPeer reviewe

    Nitrates as a potential N Supply for microbial ecosystems in a hyperarid Mars analog system

    Get PDF
    This research was funded by European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement 678812) (to M.W.C.). J.S. also acknowledges support from the China Scholarship Council (CSC).Nitrate is common in Mars sediments owing to long-term atmospheric photolysis, oxidation, and potentially, impact shock heating. The Atacama Desert in Chile, which is the driest region on Earth and rich in nitrate deposits, is used as a Mars analog in this study to explore the potential effects of high nitrate levels on growth of extremophilic ecosystems. Seven study sites sampled across an aridity gradient in the Atacama Desert were categorized into 3 clusters—hyperarid, middle, and arid sites—as defined by essential soil physical and chemical properties. Intriguingly, the distribution of nitrate concentrations in the shallow subsurface suggests that the buildup of nitrate is not solely controlled by precipitation. Correlations of nitrate with SiO2/Al2O3 and grain sizes suggest that sedimentation rates may also be important in controlling nitrate distribution. At arid sites receiving more than 10 mm/yr precipitation, rainfall shows a stronger impact on biomass than nitrate does. However, high nitrate to organic carbon ratios are generally beneficial to N assimilation, as evidenced both by soil geochemistry and enriched culturing experiments. This study suggests that even in the absence of precipitation, nitrate levels on a more recent, hyperarid Mars could be sufficiently high to benefit potentially extant Martian microorganisms.Publisher PDFPeer reviewe

    Groundwater microbiology of an urban open‐loop ground source heat pump with high methane

    Get PDF
    Ground source heat pumps (GSHPs) are low carbon alternatives to gas boilers for decarbonising heating. Open-loop GSHP systems abstract groundwater, pass it though a heat exchanger and return it to ground or surface water. Groundwater samples from the top and base of an abstraction and a recharge borehole of an open-loop GSHP system in Cardiff, UK were assessed, and compared to two local boreholes in the same aquifer. Groundwater samples were taken when the GSHP system was active (once) and inactive (twice) and analysed for changes in geochemistry, viable cell counts and microbial community (16S rRNA gene sequencing). The GSHP had a distinct geochemistry and microbial community compared to the control boreholes, and the abstraction borehole showed greater variability than the recharge borehole. The microbial community of the GSHP system showed an increase in relative abundance of genera involved in oxidation of methane and methylated compounds, of which Methylotenera was the most abundant (up to 83.9% of 16S rRNA gene sequences). There were also changes in genera associated with nitrification (Nitrospira, Nitrosomonas) and those with potential for sulphur and iron cycling (Rhodoferax). Methane concentration was analysed out after identification of methylotrophs and found that methane concentrations were up to 2855 Îźg L-1, likely having had a significant impact on the bacterial communities present. Understanding the microbiology and biogeochemisty of GSHP systems provides insight into potential issues with local infrastructure and long-term system performance, and support modelling to maximise efficient and sustainable use of the subsurface

    Renaissance for magnetotactic bacteria in astrobiology

    Get PDF
    Capable of forming magnetofossils similar to some magnetite nanocrystals observed in the Martian meteorite ALH84001, magnetotactic bacteria (MTB) once occupied a special position in the field of astrobiology during the 1990s and 2000s. This flourish of interest in putative Martian magnetofossils faded from all but the experts studying magnetosome formation, based on claims that abiotic processes could produce magnetosome-like magnetite crystals. Recently, the rapid growth in our knowledge of the extreme environments in which MTB thrive and their phylogenic heritage, leads us to advocate for a renaissance of MTB in astrobiology. In recent decades, magnetotactic members have been discovered alive in natural extreme environments with wide ranges of salinity (up to 90 g L-1), pH (1-10), and temperature (0-70 °C). Additionally, some MTB populations are found to be able to survive irradiated, desiccated, metal-rich, hypomagnetic, or microgravity conditions, and are capable of utilizing simple inorganic compounds such as sulfate and nitrate. Moreover, MTB likely emerged quite early in Earth's history, coinciding with a period when the Martian surface was covered with liquid water as well as a strong magnetic field. MTB are commonly discovered in suboxic or oxic-anoxic interfaces in aquatic environments or sediments similar to ancient crater lakes on Mars, such as Gale crater and Jezero crater. Taken together, MTB can be exemplary model microorganisms in astrobiology research, and putative ancient Martian life, if it ever occurred, could plausibly have included magnetotactic microorganisms. Furthermore, we summarize multiple typical biosignatures that can be applied for the detection of ancient MTB on Earth and extraterrestrial MTB-like life. We suggest transporting MTB to space stations and simulation chambers to further investigate their tolerance potential and distinctive biosignatures to aid in understanding the evolutionary history of MTB and the potential of magnetofossils as an extraterrestrial biomarker

    Public attitudes and literacy about posttraumatic stress disorder in U.S. adults

    Get PDF
    Funding for this study was provided by the Clinical Neurosciences Division of the National Center for Posttraumatic Stress Disorder and a private donation. The work was supported by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development.There has been little study of public literacy regarding posttraumatic stress disorder (PTSD). Public knowledge and attitudes about PTSD are important for encouraging treatment, prevention, and informing policies. Using a national online survey of 541 adults across 47 U.S. states in November 2016, we assessed attitudes and knowledge about PTSD. Most notably with respect to attitudes, 76–94% of the sample endorsed more federal funding for research, training, and practice for PTSD; and 76% of the sample also believed people with PTSD should have restricted access to firearms. With respect to knowledge, participants demonstrated good general knowledge about PTSD, but tended to overestimate the rate of PTSD and trauma exposure, and demonstrated little knowledge about effective treatments. Sociodemographic characteristics and political affiliation were associated with PTSD knowledge and attitudes, but clinical characteristics did not explain much additional variance. Together, these findings suggest that there is strong public support for research and practice related to PTSD, but little public knowledge about evidence-based treatments for this disorder.PostprintPeer reviewe

    Unraveling biogeochemical phosphorus dynamics in hyperarid Mars‐analogue soils using stable oxygen isotopes in phosphate

    Get PDF
    With annual precipitation less than 20 mm and extreme UV intensity, the Atacama Desert in northern Chile has long been utilized as an analogue for recent Mars. In these hyperarid environments, water and biomass are extremely limited, and thus, it becomes difficult to generate a full picture of biogeochemical phosphate‐water dynamics. To address this problem, we sampled soils from five Atacama study sites and conducted three main analyses—stable oxygen isotopes in phosphate, enzyme pathway predictions, and cell culture experiments. We found that high sedimentation rates decrease the relative size of the organic phosphorus pool, which appears to hinder extremophiles. Phosphoenzyme and pathway prediction analyses imply that inorganic pyrophosphatase is the most likely catalytic agent to cycle P in these environments, and this process will rapidly overtake other P utilization strategies. In these soils, the biogenic δ18O signatures of the soil phosphate (δ18OPO4) can slowly overprint lithogenic δ18OPO4 values over a timescale of tens to hundreds of millions of years when annual precipitation is more than 10 mm. The δ18OPO4 of calcium‐bound phosphate minerals seems to preserve the δ18O signature of the water used for biogeochemical P cycling, pointing toward sporadic rainfall and gypsum hydration water as key moisture sources. Where precipitation is less than 2 mm, biological cycling is restricted and bedrock δ18OPO4 values are preserved. This study demonstrates the utility of δ18OPO4 values as indicative of biogeochemical cycling and hydrodynamics in an extremely dry Mars‐analogue environment

    Visible and near-infrared spectroscopy and deep learning application for the qualitative and quantitative investigation of nitrogen status in cotton leaves

    Get PDF
    Leaf nitrogen concentration (LNC) is a critical indicator of crop nutrient status. In this study, the feasibility of using visible and near-infrared spectroscopy combined with deep learning to estimate LNC in cotton leaves was explored. The samples were collected from cotton’s whole growth cycle, and the spectra were from different measurement environments. The random frog (RF), weighted partial least squares regression (WPLS), and saliency map were used for characteristic wavelength selection. Qualitative models (partial least squares discriminant analysis (PLS-DA), support vector machine for classification (SVC), convolutional neural network classification (CNNC) and quantitative models (partial least squares regression (PLSR), support vector machine for regression (SVR), convolutional neural network regression (CNNR)) were established based on the full spectra and characteristic wavelengths. Satisfactory results were obtained by models based on CNN. The classification accuracy of leaves in three different LNC ranges was up to 83.34%, and the root mean square error of prediction (RMSEP) of quantitative prediction models of cotton leaves was as low as 3.36. In addition, the identification of cotton leaves based on the predicted LNC also achieved good results. These results indicated that the nitrogen content of cotton leaves could be effectively detected by deep learning and visible and near-infrared spectroscopy, which has great potential for real-world application

    Polymorphisms on SSC15q21-q26 Containing QTL for reproduction in Swine and its association with litter size

    Get PDF
    Several quantitative trait loci (QTL) for important reproductive traits (ovulation rate) have been identified on the porcine chromosome 15 (SSC15). To assist in the selection of positional candidate swine genes for these QTL on SSC15, twenty-one genes had already been assigned to SSC15 in a previous study in our lab, by using the radiation hybrid panel IMpRH. Further polymorphism studies were carried out on these positional candidate genes with four breeds of pigs (Duroc, Erhualian, Dahuabai and Landrace) harboring significant differences in reproduction traits. A total of nineteen polymorphisms were found in 21 genes. Among these, seven in six genes were used for association studies, whereby NRP2 polymorphism was found to be significantly (p < 0.05) associated with litter-size traits. NRP2 might be a candidate gene for pig-litter size based on its chromosome location (Du et al., 2006), significant association with litter-size traits and relationships with Sema and the VEGF super families

    Notch signaling as a therapeutic target for breast cancer treatment?

    Get PDF
    Aberrant Notch signaling can induce mammary gland carcinoma in transgenic mice, and high expressions of Notch receptors and ligands have been linked to poor clinical outcomes in human patients with breast cancer. This suggests that inhibition of Notch signaling may be beneficial for breast cancer treatment. In this review, we critically evaluate the evidence that supports or challenges the hypothesis that inhibition of Notch signaling would be advantageous in breast cancer management. We find that there are many remaining uncertainties that must be addressed experimentally if we are to exploit inhibition of Notch signaling as a treatment approach in breast cancer. Nonetheless, Notch inhibition, in combination with other therapies, is a promising avenue for future management of breast cancer. Furthermore, since aberrant Notch4 activity can induce mammary gland carcinoma in the absence of RBPjÎş, a better understanding of the components of RBPjÎş-independent oncogenic Notch signaling pathways and their contribution to Notch-induced tumorigenesis would facilitate the deployment of Notch inhibition strategies for effective treatment of breast cancer
    • …
    corecore