41 research outputs found

    Scaling of Berry-curvature monopole dominated large linear positive magnetoresistance

    Full text link
    The linear positive magnetoresistance (LPMR) is a widely observed phenomenon in topological materials, which is promising for potential applications on topological spintronics. However, its mechanism remains ambiguous yet and the effect is thus uncontrollable. Here, we report a quantitative scaling model that correlates the LPMR with the Berry curvature, based on a ferromagnetic Weyl semimetal CoS2 that bears the largest LPMR of over 500% at 2 Kelvin and 9 Tesla, among known magnetic topological semimetals. In this system, masses of Weyl nodes existing near the Fermi level, revealed by theoretical calculations, serve as Berry-curvature monopoles and low-effective-mass carriers. Based on the Weyl picture, we propose a relation MR=eBΩF\text{MR}=\frac{e}{\hbar }B{{\Omega }_{\text{F}}}, with B being the applied magnetic field and ΩF{{\Omega }_{\text{F}}} the average Berry curvature near the Fermi surface, and further introduce temperature factor to both MR/B slope (MR per unit field) and anomalous Hall conductivity, which establishes the connection between the model and experimental measurements. A clear picture of the linearly slowing down of carriers, i.e., the LPMR effect, is demonstrated under the cooperation of the k-space Berry curvature and real-space magnetic field. Our study not only provides an experimental evidence of Berry curvature induced LPMR for the first time, but also promotes the common understanding and functional designing of the large Berry-curvature MR in topological Dirac/Weyl systems for magnetic sensing or information storage

    Large anomalous Hall effect in a hexagonal ferromagnetic Fe5Sn3 single crystal

    Full text link
    In this paper, we report an experimental observation of the large anomalous Hall effect (AHE) in a hexagonal ferromagnetic Fe5Sn3 single crystal with current along the b axis and a magnetic field normal to the bc plane. The intrinsic contribution of the anomalous Hall conductance sigma_AH^int was approximately 613 {\Omega}-1 cm-1, which was more than 3 times the maximum value in the frustrated kagome magnet Fe3Sn2 and nearly independent of the temperature over a wide range between 5 and 350 K. The analysis results revealed that the large AHE was dominated by a common, intrinsic term, while the extrinsic contribution, i.e., the skew scattering and side jump, turned out to be small. In addition to the large AHE, it was found the types of majority carriers changed at approximately 275 and 30 K, consistent with the critical temperatures of the spin reorientation. These findings suggest that the hexagonal ferromagnetic Fe5Sn3 single crystal is an excellent candidate to use for the study of the topological features in ferromagnets.Comment: accepted as a rapid communication in Phy. Rev.

    Supporting Information - Atomically precise photothermal nanomachines

    No full text
    Histology images raw data</p

    Synthesis of urchin-like and yolk–shell TiO 2

    No full text
    corecore