108 research outputs found

    Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging

    Get PDF
    A superior and commercially exploitable 'green synthesis' of optically active carbon nanoparticle (OCN) is revealed in this work. The naked carbon particles (<20 nm) were derived from commercial food grade honey. The fluorescence properties of these particles were significantly enhanced by utilizing hyberbranched polymer for surface passivation. A dramatic increase in near infrared emission was achieved compared to a linear polymer (PEG) coated carbon nanoparticles. Interestingly, as passivating agent becomes more extensively branched (pseudo generation 2 to 4), the average radiant efficiency amplifies considerably as a direct result of the increasing surface area available for light passivation. The particles showed negligible loss of cell viability in presence of endothelial cells in vitro. Preliminary in vivo experiment showed high contrast enhancement in auxiliary lymphnode in a mouse model. The exceptionally rapid lymphatic transport of these particles suggests that such an approach may offer greater convenience and reduced procedural expense, as well as improved surgical advantage as the patient is positioned on the table for easier resection

    Carbon nanoparticles as a multimodal thermoacoustic and photoacoustic contrast agent

    Get PDF
    We demonstrated the potential of carbon nanoparticles (CNPs) as exogenous contrast agents for both thermoacoustic (TA) tomography (TAT) and photoacoustic (PA) tomography (PAT). In comparison to deionized water, the CNPs provided a four times stronger signal in TAT at 3 GHz. In comparison to blood, The CNPs provided a much stronger signal in PAT over a broad wavelength range of 450-850 nm. Specifically, the maximum signal enhancement in PAT was 9.4 times stronger in the near-infrared window of 635-670 nm. In vivo blood-vessel PA imaging was performed non-invasively on a mouse femoral area. The images, captured after the tail vein injection of CNPs, show a gradual enhancement of the optical absorption in the vessels by up to 230%. The results indicate that CNPs can be potentially used as contrast agents for TAT and PAT to monitor the intravascular or extravascular pathways in clinical applications

    Anti-angiogenesis therapy in the Vx2 rabbit cancer model with a lipase-cleavable Sn 2 taxane phospholipid prodrug using Ī±vĪ²3-targeted theranostic nanoparticles

    Get PDF
    In nanomedicine, the hydrophobic nature of paclitaxel has favored its incorporation into many nanoparticle formulations for anti-cancer chemotherapy. At lower doses taxanes are reported to elicit anti-angiogenic responses. In the present study, the facile synthesis, development and characterization of a new lipase-labile docetaxel prodrug is reported and shown to be an effective anti-angiogenic agent in vitro and in vivo. The Sn 2 phosphatidylcholine prodrug was stably incorporated into the lipid membrane of Ī±(v)Ī²(3)-integrin targeted perfluorocarbon (PFC) nanoparticles (Ī±(v)Ī²(3)-Dxtl-PD NP) and did not appreciably release during dissolution against PBS buffer or plasma over three days. Overnight exposure of Ī±(v)Ī²(3)-Dxtl-PD NP to plasma spiked with phospholipase enzyme failed to liberate the taxane from the membrane until the nanoparticle integrity was compromised with alcohol. The bioactivity and efficacy of Ī±(v)Ī²(3)-Dxtl-PD NP in endothelial cell culture was as effective as Taxol(Ā®) or free docetaxel in methanol at equimolar doses over 96 hours. The anti-angiogenesis effectiveness of Ī±(v)Ī²(3)-Dxtl-PD NP was demonstrated in the Vx2 rabbit model using MR imaging of angiogenesis with the same Ī±(v)Ī²(3)-PFC nanoparticle platform. Nontargeted Dxtl-PD NP had a similar MR anti-angiogenesis response as the integrin-targeted agent, but microscopically measured decreases in tumor cell proliferation and increased apoptosis were detected only for the targeted drug. Equivalent dosages of Abraxane(Ā®) given over the same treatment schedule had no effect on angiogenesis when compared to control rabbits receiving saline only. These data demonstrate that Ī±(v)Ī²(3)-Dxtl-PD NP can reduce MR detectable angiogenesis and slow tumor progression in the Vx2 model, whereas equivalent systemic treatment with free taxane had no benefit

    Carbon nanoparticles as a multimodal thermoacoustic and photoacoustic contrast agent

    Get PDF
    We demonstrated the potential of carbon nanoparticles (CNPs) as exogenous contrast agents for both thermoacoustic (TA) tomography (TAT) and photoacoustic (PA) tomography (PAT). In comparison to deionized water, the CNPs provided a four times stronger signal in TAT at 3 GHz. In comparison to blood, The CNPs provided a much stronger signal in PAT over a broad wavelength range of 450-850 nm. Specifically, the maximum signal enhancement in PAT was 9.4 times stronger in the near-infrared window of 635-670 nm. In vivo blood-vessel PA imaging was performed non-invasively on a mouse femoral area. The images, captured after the tail vein injection of CNPs, show a gradual enhancement of the optical absorption in the vessels by up to 230%. The results indicate that CNPs can be potentially used as contrast agents for TAT and PAT to monitor the intravascular or extravascular pathways in clinical applications

    A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging

    Get PDF
    Imaging sentinel lymph nodes (SLN) could provide us with critical information about the progression of a cancerous disease. Real-time high-resolution intraoperative photoacoustic imaging (PAI) in conjunction with a near-infrared (NIR) probe may offer opportunities for the immediate imaging for direct identification and resection of SLN or collecting tissue samples. In this work a commercially amenable synthetic methodology is revealed for fabricating luminescent carbon nanoparticles with rapid clearance properties. A one-pot ā€œgreenā€ technique is pursued, which involved rapid surface passivation of carbon nanoparticles with organic macromolecules (e.g., polysorbate, polyethyleneglycol) in solvent-free conditions. Interestingly, the naked carbon nanoparticles are derived for the first time, from commercial food grade honey. Surface coated particles are markedly smaller (āˆ¼7 nm) than previously explored particles (gold, single-walled carbon nanotubes, copper) for SLN imaging. The results indicate an exceptionally rapid signal enhancement (āˆ¼2 min) of the SLN. Owing to their strong optical absorption in the NIR region, tiny size and rapid lymphatic transport, this platform offers great potential for faster resection of SLN and may lower complications caused in axillary investigation by mismarking with dyes or low-resolution imaging techniques

    A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging

    Get PDF
    Imaging sentinel lymph nodes (SLN) could provide us with critical information about the progression of a cancerous disease. Real-time high-resolution intraoperative photoacoustic imaging (PAI) in conjunction with a near-infrared (NIR) probe may offer opportunities for the immediate imaging for direct identification and resection of SLN or collecting tissue samples. In this work a commercially amenable synthetic methodology is revealed for fabricating luminescent carbon nanoparticles with rapid clearance properties. A one-pot ā€œgreenā€ technique is pursued, which involved rapid surface passivation of carbon nanoparticles with organic macromolecules (e.g., polysorbate, polyethyleneglycol) in solvent-free conditions. Interestingly, the naked carbon nanoparticles are derived for the first time, from commercial food grade honey. Surface coated particles are markedly smaller (āˆ¼7 nm) than previously explored particles (gold, single-walled carbon nanotubes, copper) for SLN imaging. The results indicate an exceptionally rapid signal enhancement (āˆ¼2 min) of the SLN. Owing to their strong optical absorption in the NIR region, tiny size and rapid lymphatic transport, this platform offers great potential for faster resection of SLN and may lower complications caused in axillary investigation by mismarking with dyes or low-resolution imaging techniques
    • ā€¦
    corecore