821 research outputs found

    Histological validation of the brain cell body imaging with diffusion MRI at ultrahigh field

    Get PDF
    Biophysical modelling of diffusion-weighted MRI (DW-MRI) data can help to gain more insight into brain microstructure. However, models need to be validated. This work validates a recently-developed technique for non-invasive mapping of brain cell-body (soma) size/ density with DW-MRI, by using ultrahigh-field DW-MRI experiments and histology of mouse brain. Predictions from numerical simulations are experimentally confirmed and brain’s maps of MR-measured soma size/density are shown to correspond very well with histology. We provide differential contrasts between cell layers that are less expressed in tensor analyses, leading to novel complementary contrasts of the brain tissue. Limitations and future research directions are discussed

    Abundance of cell bodies can explain the stick model’s failure in grey matter at high bvalue

    Get PDF
    This work investigates the validity of the stick model used in diffusion-weighted MRI for modelling cellular projections in brain tissue. We hypothesize that the model will fail to describe the signals from grey matter due to an abundance of cell bodies. Using high b-value (≄3 ms/”m ) data from rat and human brain, we show that the assumption fails for grey matter. Using diffusion simulation in realistic digital models of neurons/glia, we demonstrate the breakdown of the assumption can be explained by the presence of cell bodies. Our findings suggest that high b-value data may be used to probe cell bodies

    A compartment based model for non-invasive cell body imaging by diffusion MRI

    Get PDF
    This study aims to open a new window onto brain tissue microstructure by proposing a new technique to estimate cell body (namely soma) size/density non-invasively. Using Monte-Carlo simulation and data from rat brain, we show that soma’s size and density have a specific signature on the direction-averaged DW-MRI signal at high b values. Simulation shows that, at reasonably short diffusion times, soma and neurites can be approximated as two non-exchanging compartments, modelled as “sphere” and “sticks” respectively. Fitting this simple compartment model to rat data produces maps with contrast consistent with published histological data

    Polarization sensitive spectroscopy of charged Quantum Dots

    Full text link
    We present an experimental and theoretical study of the polarized photoluminescence spectrum of single semiconductor quantum dots in various charge states. We compare our high resolution polarization sensitive spectral measurements with a new many-carrier theoretical model, which was developed for this purpose. The model considers both the isotropic and anisotropic exchange interactions between all participating electron-hole pairs. With this addition, we calculate both the energies and polarizations of all optical transitions between collective, quantum dot confined charge carrier states. We succeed in identifying most of the measured spectral lines. In particular, the lines resulting from singly-, doubly- and triply- negatively charged excitons and biexcitons. We demonstrate that lines emanating from evenly charged states are linearly polarized. Their polarization direction does not necessarily coincide with the traditional crystallographic direction. It depends on the shells of the single carriers, which participate in the recombination process.Comment: 11 pages, 9 figures. Revised versio

    Layer-specific connectivity revealed by diffusion-weighted functional MRI in the rat thalamocortical pathway

    Get PDF
    Investigating neural activity from a global brain perspective in-vivo has been in the domain of functional Magnetic Resonance Imaging (fMRI) over the past few decades. The intricate neurovascular couplings that govern fMRI's blood-oxygenation-level-dependent (BOLD) functional contrast are invaluable in mapping active brain regions, but they also entail significant limitations, such as non-specificity of the signal to active foci. Diffusion-weighted functional MRI (dfMRI) with relatively high diffusion-weighting strives to ameliorate this shortcoming as it offers functional contrasts more intimately linked with the underlying activity. Insofar, apart from somewhat smaller activation foci, dfMRI's contrasts have not been convincingly shown to offer significant advantages over BOLD-driven fMRI, and its activation maps relied on significant modelling. Here, we study whether dfMRI could offer a better representation of neural activity in the thalamocortical pathway compared to its (spin-echo (SE)) BOLD counterpart. Using high-end forepaw stimulation experiments in the rat at 9.4 T, and with significant sensitivity enhancements due to the use of cryocoils, we show for the first time that dfMRI signals exhibit layer specificity, and, additionally, display signals in areas devoid of SE-BOLD responses. We find that dfMRI signals in the thalamocortical pathway cohere with each other, namely, dfMRI signals in the ventral posterolateral (VPL) thalamic nucleus cohere specifically with layers IV and V in the somatosensory cortex. These activity patterns are much better correlated (compared with SE-BOLD signals) with literature-based electrophysiological recordings in the cortex as well as thalamus. All these findings suggest that dfMRI signals better represent the underlying neural activity in the pathway. In turn, these advanatages may have significant implications towards a much more specific and accurate mapping of neural activity in the global brain in-vivo

    A novel mechanism of actin filament processive capping by formin: solution of the rotation paradox

    Get PDF
    The FH2 domains of formin family proteins act as processive cappers of actin filaments. Previously suggested stair-stepping mechanisms of processive capping imply that a formin cap rotates persistently in one direction with respect to the filament. This challenges the formin-mediated mechanism of intracellular cable formation. We suggest a novel scenario of processive capping that is driven by developing and relaxing torsion elastic stresses. Based on the recently discovered crystal structure of an FH2–actin complex, we propose a second mode of processive capping—the screw mode. Within the screw mode, the formin dimer rotates with respect to the actin filament in the direction opposite to that generated by the stair-stepping mode so that a combination of the two modes prevents persistent torsion strain accumulation. We determine an optimal regime of processive capping, whose essence is a periodic switch between the stair-stepping and screw modes. In this regime, elastic energy does not exceed feasible values, and supercoiling of actin filaments is prevented

    Second-Hand Tobacco Smoke in Never Smokers Is a Significant Risk Factor for Coronary Artery Calcification

    Get PDF
    ObjectivesThe aim of this study was to assess the relationship of the extent of subclinical atherosclerosis measured by coronary artery calcification (CAC) to the extent of second-hand tobacco smoke (SHTS) exposure in asymptomatic people who never smoked.BackgroundAn association between SHTS and CAC was recently reported in a single study, but the quantitative aspects of the relationship are not known.MethodsA cohort of 3,098 never smokers 40 to 80 years of age, enrolled in the FAMRI-IELCAP (Flight Attendant Medical Research Institute International Early Lung Cancer Action Program) screening program, completed a SHTS questionnaire, and had a low-dose nongated computed tomography scan. The questionnaire provided a quantitative score for total SHTS exposure, as well as separately as a child and as an adult at home and at work; 4 categories of exposure to SHTS were identified (minimal, low, moderate, and high exposure). CAC was graded using a previously validated ordinal scale score that ranged from 0 to 12. Logistic regression analysis of the prevalence and ordered logistic regression analysis of the extent of CAC were performed to assess the independent contribution of SHTS adjusted for age, sex, diabetes, hypercholesterolemia, hypertension, and renal disease. Linear and quadratic regression analyses of CAC and SHTS were performed.ResultsThe prevalence of CAC was 24.3% (n = 754) and was significantly higher in those with more than minimal SHTS exposure compared with those with minimal SHTS exposure (26.4% vs. 18.5%, p < 0.0001). The adjusted odds ratios for CAC prevalence were 1.54 (95% confidence interval: 1.17 to 2.20) for low SHTS exposure, 1.60 (95% confidence interval: 1.21 to 2.10) for moderate exposure, and 1.93 (95% confidence interval: 1.49 to 2.51) for high exposure. The association of the extent of SHTS with the extent of CAC was confirmed by the adjusted odds ratio (p < 0.0001).ConclusionsThe presence and extent of CAC were associated with extent of SHTS exposure even when adjusted for other risk factors for CAC, suggesting that SHTS exposure causes CAC
    • 

    corecore