22 research outputs found

    Beta cell death by cell-free DNA and outcome after clinical islet transplantation

    Get PDF
    Background: Optimizing engraftment and early survival after clinical islet transplantation is critical to long-term function, but there are no reliable, quantifiable measures to assess beta cell death. Circulating cell free DNA (cfDNA) derived from beta cells has been identified as a novel biomarker to detect cell loss, and was recently validated in new-onset type 1 diabetes and in islet transplant patients. Methods: Herein we report beta cell cfDNA measurements after allotransplantation in 37 subjects and the correlation with clinical outcomes. Results: A distinctive peak of cfDNA was observed 1hr after transplantation in 31/37 (83.8%) of subjects. The presence and magnitude of this signal did not correlate with transplant outcome. The 1hr signal represents dead beta cells carried over into the recipient after islet isolation and culture, combined with acute cell death post infusion. Beta cell cfDNA was also detected 24hrs post-transplant (8/37 subjects, 21.6%). This signal was associated with higher 1-month insulin requirements (p=0.04), lower 1-month stimulated C-peptide levels (p=0.01) and overall worse 3-month engraftment, by insulin independence (ROC:AUC=0.70, p=0.03) and Beta 2 score (ROC:AUC=0.77, p=0.006). Conclusions: cfDNA-based estimation of beta cell death 24hrs after islet allotransplantation correlates with clinical outcome and could predict early engraftment.B.G.-L. is supported through the Alberta Innovates :Health Solutions (AIHS) Clinician Fellowship and through the CNTRP. A.P. is supported through AIHS Postgraduate Fellowship and CNTRP. A.M.J.S. is supported through AIHS, and holds a Canada Research Chair in Transplantation Surgery and Regenerative Medicine funded through the Government of Canada. A.M.J.S. is also funded by AIHS Collaborative Research and Innovation Opportunity Team Award and the Diabetes Research Institute Foundation of Canada (DRIFCan). Supported by grants from the Juvenile Diabetes Research Foundation (JDRF) (3-SRA-2014-38-Q-R, to Y.D. and A.M.J.S.), National Institute of Health (NIH) (HIRN grant UC4 DK104216, to Y.D.), DON foundation (Stichting Diabetes Onderzoek Nederland) (to Y.D), the European Union (ELASTISLET project, to Y.D.) and the Kahn foundation (to Y.D., R.S., and B.G.). Supported in part by a grant from The United States Agency for International Development (USAID) American Schools and Hospitals Abroad Program for the upgrading of the Hebrew University sequencing core facilit

    De Novo Formation of Insulin-Producing “Neo-β Cell Islets” from Intestinal Crypts

    Get PDF
    SUMMARY The ability to interconvert terminally differentiated cells could serve as a powerful tool for cell-based treatment of degenerative diseases, including diabetes mellitus. To determine which, if any, adult tissues are competent to activate an islet β cell program, we performed an in vivo screen by expressing three β cell “reprogramming factors” in a wide spectrum of tissues. We report that transient intestinal expression of these factors—Pdx1, MafA, and Ngn3 (PMN)—promotes rapid conversion of intestinal crypt cells into endocrine cells, which coalesce into “neoislets” below the crypt base. Neoislet cells express insulin and show ultrastructural features of β cells. Importantly, intestinal neoislets are glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Moreover, PMN expression in human intestinal “organoids” stimulates the conversion of intestinal epithelial cells into β-like cells. Our results thus demonstrate that the intestine is an accessible and abundant source of functional insulin-producing cells

    Circulating Unmethylated Insulin DNA As a Biomarker of Human Beta Cell Death: A Multi-laboratory Assay Comparison

    Get PDF
    Context: There is an unmet need for biomarkers of pancreatic beta-cell death to improve early diagnosis of type 1 diabetes, enroll subjects into clinical trials, and assess treatment response. To address this need, several groups developed assays measuring insulin deoxyribonucleic acid (DNA) with unmethylated CpG sites in cell-free DNA. Unmethylated insulin DNA should be derived predominantly from beta-cells and indicate ongoing beta-cell death. Objective: To assess the performance of three unmethylated insulin DNA assays. Design and participants: Plasma or serum samples from 13 subjects undergoing total pancreatectomy and islet autotransplantation were coded and provided to investigators to measure unmethylated insulin DNA. Samples included a negative control taken post-pancreatectomy but pretransplant, and a positive control taken immediately following islet infusion. We assessed technical reproducibility, linearity, and persistence of detection of unmethylated insulin DNA for each assay. Results: All assays discriminated between the negative sample and samples taken directly from the islet transplant bag; 2 of 3 discriminated negative samples from those taken immediately after islet infusion. When high levels of unmethylated insulin DNA were present, technical reproducibility was generally good for all assays. Conclusions: The measurement of beta cell cell-free DNA, including insulin, is a promising approach, warranting further testing and development in those with or at-risk for type 1 diabetes, as well as in other settings where understanding the frequency or kinetics of beta cell death could be useful

    The imprinting mechanism of the Prader–Willi/Angelman regional control center

    No full text
    The 2 Mb domain on chromosome 15q11–q13 that carries the imprinted genes involved in Prader–Willi (PWS) and Angelman (AS) syndromes is under the control of an imprinting center comprising two regulatory regions, the PWS-SRO located around the SNRPN promoter and the AS-SRO located 35 kb upstream. Here we describe the results of an analysis of the epigenetic features of these two sequences and their interaction. The AS-SRO is sensitive to DNase I, and packaged with acetylated histone H4 and methylated histone H3(K4) only on the maternal allele, and this imprinted epigenetic structure is maintained in dividing cells despite the absence of clearcut differential DNA methylation. Genetic analysis shows that the maternal AS-SRO is essential for setting up the DNA methylation state and closed chromatin structure of the neighboring PWS-SRO. In contrast, the PWS-SRO has no influence on the epigenetic features of the AS-SRO. These results suggest a stepwise, unidirectional program in which structural imprinting at the AS-SRO brings about allele-specific repression of the maternal PWS-SRO, thereby preventing regional activation of genes on this allele

    The correlation between high-sensitivity troponin-T and cell-free cardiac DNA in the blood of patients undergoing noncardiac, predominantly vascular surgery

    No full text
    Objective To present a novel method that uses an epigenetic fingerprint to measure changes in plasma concentrations of cardiac-specific cell-free DNA (CS-cfDNA) as a marker of myocardial cell death. Methods This prospective, analytic, observational comparative study included patients with heart disease or multiple risk factors for heart disease undergoing major noncardiac, mostly vascular surgery, requiring an arterial-line, and at least 24 h hospitalization in the post anaesthesia care unit or critical care unit after surgery. Blood samples were collected at least four times per patient to measure troponin-T (via high-sensitivity troponin-T test) and CS-cfDNA pre- and postoperatively. Results A total of 117 patients were included (group 1, 77 patients [66%] with low preoperative and postoperative troponin-T; group 2, 18 patients [15%] with low preoperative but increased postoperative troponin-T; group 3, 16 patients [14%] with high troponin-T both preoperatively and postoperatively; and group 4, six patients [5%] with elevated preoperative troponin-T that decreased postoperatively). The increase in CS-cfDNA after surgery was statistically significant only in group 2, which correlated with an increase in troponin-T in the same group. Conclusions CS-cfDNA increased early postoperatively, particularly in patients with silent postoperative troponin elevation, and was correlated with an increase in troponin-T. These results may suggest that, in the subgroup of patients with postoperative elevated troponin, cardiomyocyte death indeed occurred
    corecore