3,253 research outputs found

    Thin film optical filter fabrication and characterization

    Full text link
    Thin film coatings have a large number of applications. For example, one can eliminate unwanted reflection on a photographic lens or unwanted wavelengths of light in optics experimentation. The fabrication and characterization of films whose refractive indices can be arbitrarily modulated (‘Rugate Filters’) is an ongoing exploration in materials science1,2. Therefore, calibrating a process which can manufacture such films is a relevant pursuit in forwarding such explorations. Reactive magnetron sputter deposition is a commonly used technique for the productions of thin films3,4. This technique steadily flows reactive gas (RG) into a vacuum chamber in which an electric field has been established. The RG is then ionized by the electric field which causes it to bombard a solid target placed inside the chamber. Many of the atoms which are displaced by the ionized gas further travel towards an adjacent substrate (Figure 1). Ideally, this occurs in such a way as to deposit the newly formed molecule on the surface a glass slide. In our case the RG, N2, and O2 were intended to deposit Si3N4 and SiO2 whose indices of refraction are respectively high and low (Figure 4). Reproducibility of this contrast is essential in the fabrication of the desired optical devices. In order to determine that these intended reactions occurred in a reproducible way, the thickness and refractive index of the films where calculated from the Transmission Spectra of the films

    HYDROLOGIC EVALUATION OF RESIDENTIAL RAIN GARDENS USING A STORMWATER RUNOFF SIMULATOR

    Get PDF
    Engineered bioretention cells with underdrains have shown water quality and hydrologic benefits for abating urban stormwater problems. Less is known about the hydrologic performance of residential rain gardens that rely on in situ soil infiltration as the primary mechanism of volume control. Eleven residential rain gardens in Lincoln, Nebraska, were evaluated using a variable-rate stormwater runoff simulator. A volume-based water quality volume (WQV) design storm of 3.0 cm was applied to each rain garden as an SCS Type II runoff hydrograph until the system began overflowing to test the rain gardens for surface and subsurface storage capacity, drawdown rate, ponding depth, and overflow characteristics. Every rain garden tested drained in 30 h or less, with six gardens draining in less than 1 h. Rain garden surface storage capacity was poor, retaining on average only 16% of the WQV. On average, the rain gardens studied could store and infiltrate only 40% of the WQV, with only two gardens able to store and infiltrate greater than 90% of the WQV. On average, 59% of the runoff was captured as subsurface storage. Results of this study indicate that these 2- to 4-year-old rain gardens are limited not by drain times and rates, which often met or exceeded common design recommendations, but rather by inadequate surface storage characteristics. Extrapolating measured surface storage volumes to hypothetical systems with evenly graded depths of 15.2 cm, a minimum local depth recommendation, resulted in only one garden with enough storage to contain the WQV. On average, the extrapolated storage held only 65% of the WQV. It was shown that subsurface storage can make up for a lack of surface storage; the systems studied herein had an average of 2.7 times more subsurface storage than surface storage as a percentage of inflow volume before overflow began

    Superconductivity in a spin liquid - a one dimensional example

    Full text link
    We study a one-dimensional model of interacting conduction electrons with a two-fold degenerate band away from half filling. The interaction includes an on-site Coulomb repulsion and Hund's rule coupling. We show that such one-dimensional system has a divergent Cooper pair susceptibility at T = 0, provided the Coulomb interaction UU between electrons on the same orbital and the modulus of the Hund's exchange integral ∣J∣|J| are larger than the interorbital Coulomb interaction. It is remarkable that the superconductivity can be achieved for {\it any} sign of JJ. The opening of spectral gaps makes this state stable with respect to direct electron hopping between the orbitals. The scaling dimension of the superconducting order parameter is found to be between 1/4 (small UU) and 1/2 (large UU).Comment: 11 pages, Latex, no figure

    System for the measurement of ultra-low stray light levels

    Get PDF
    An apparatus is described for measuring the effectiveness of stray light suppression light shields and baffle arrangements used in optical space experiments and large space telescopes. The light shield and baffle arrangement and a telescope model are contained in a vacuum chamber. A source of short, high-powered light energy illuminates portions of the light shield and baffle arrangement and reflects a portion of same to a photomultiplier tube by virtue of multipath scattering. The resulting signal is transferred to time-channel electronics timed by the firing of the high energy light source allowing time discrimination of the signal thereby enabling the light scattered and suppressed by the model to be distinguished from the walls and holders around the apparatus

    One-dimensional spin-liquid without magnon excitations

    Full text link
    It is shown that a sufficiently strong four-spin interaction in the spin-1/2 spin ladder can cause dimerization. Such interaction can be generated either by phonons or (in the doped state) by the conventional Coulomb repulsion between the holes. The dimerized phases are thermodynamically undistinguishable from the Haldane phase, but have dramatically different correlation functions: the dynamical magnetic susceptibility, instead of displaying a sharp single magnon peak near q=Ï€q = \pi, shows only a two-particle threshold separated from the ground state by a gap.Comment: 9 pages, LaTex, to be published in Phys. Rev. Lett., vol. 78, May 199

    D-Terms from Generalized NS-NS Fluxes in Type II

    Full text link
    Orientifolds of type II string theory admit a certain set of generalized NS-NS fluxes, including not only the three-form field strength H, but also metric and non-geometric fluxes, which are related to H by T-duality. We describe in general how these fluxes appear as parameters of an effective N=1 supergravity theory in four dimensions, and in particular how certain generalized NS-NS fluxes can act as charges for R-R axions, leading to D-term contributions to the effective scalar potential. We illustrate these phenomena in type IIB with the example of a certain orientifold of T^6/Z_4.Comment: 31+1 pages, uses utarticle.cls; v2: references adde

    An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed

    Get PDF
    Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population

    Dental Pulp Cell Behavior in Biomimetic Environments

    Get PDF
    There is emerging recognition of the importance of a physiologically relevant in vitro cell culture environment to promote maintenance of stem cells for tissue engineering and regenerative medicine purposes. In vivo, appropriate cellular cues are provided by local tissue extracellular matrix (ECM), and these are not currently recapitulated well in vitro using traditional cultureware. We therefore hypothesized that better replication of the in vivo environment for cell culture and differentiation could be achieved by culturing dental pulp cells with their associated ECM. Primary dental pulp cells were subsequently seeded onto pulp-derived ECM-coated cultureware. While at up to 24 h they exhibited the same level of adherence as those cells seeded on tissue culture–treated surfaces, by 4 d cell numbers and proliferation rates were significantly decreased in cells grown on pulp ECM compared with controls. Analysis of stem cell and differentiation marker transcripts, as well as Oct 3/4 protein distribution, supported the hypothesis that cells cultured on ECM better maintained a stem cell phenotype compared with those cultured on standard tissue culture–treated surfaces. Subsequent differentiation analysis of cells cultured on ECM demonstrated that they exhibited enhanced mineralization, as determined by alizarin red staining and mineralized marker expression. Supplementation of a 3% alginate hydrogel with pulp ECM components and dental pulp cells followed by differentiation induction in mineralization medium resulted in a time-dependent mineral deposition at the periphery of the construct, as demonstrated histologically and using micro–computed tomography analysis, which was reminiscent of tooth structure. In conclusion, data indicate that culture of pulp cells in the presence of ECM better replicates the in vivo environment, maintaining a stem cell phenotype suitable for downstream tissue engineering applications

    Lattice Instability in the Spin-Ladder System under Magnetic Field

    Full text link
    We study theoretically the lattice instability in the spin gap systems under magnetic field. With the magnetic field larger than a critical value h_{c1}, the spin gap is collapsed and the magnetization arises. We found that the lattice distortion occurs in the spin-ladder at an incommensurate wavevector corresponding to the magnetization, while it does not occur in the Haldane system. At low temperatures the magnetization curve shows a first order phase transition with this lattice distortion.Comment: 10 pages, REVTEX, 2 figures(ps file), minor change
    • …
    corecore