55 research outputs found

    Georgia Department of Juvenile Justice - Education and Reentry Collaborative Programming

    Get PDF
    Many youth experience barriers reentering their local school system once released from confinement. The Georgia Department of Juvenile Justice\u27s Office of Reentry Services and School System work collaboratively to remove these barriers by building partnerships with school systems state-wide. This presentation will provide participants a programmatic overview and framework used to reduce barriers

    Prototype Backscatter Moessbauer Spectrometer for Measurement of Martian Surface Mineralogy

    Get PDF
    We have designed and successfully tested a prototype of a backscatter Moessbauer spectrometer (BaMS) targeted for use on the Martian surface to (1) determine oxidation states of iron, and (2) identify and determine relative abundances of iron-bearing mineralogies. No sample preparation is required to perform measurements; it is only necessary to bring sample and instrument into physical contact. The prototype meets our projected specification for a flight instrument in terms of mass, power, and volume. A Moessbauer spectrometer on the Martian surface would provide wide variety of information about the current state of the Martian surface, and this information is described

    Immigrants convicted of homicide: Exploring disparate sentencing outcomes

    Get PDF
    Throughout U.S. history, persistent negative stereotypes about immigrants have abounded in public discourse, leading to negative outcomes for people without U.S. citizenship across social and economic life. Stereotypes such as these are also known to impact the discretionary decision-making of judges in the sentencing phase of a trial, shifting punishment outcomes along racial, gendered, and age-related lines in ways that negatively impact minority offenders. This study explores whether the negative stereotypes surrounding immigrants may also be considered by judges, resulting in differential treatment for offenders based on citizenship. Using a 2018 dataset of offenders currently incarcerated in Texas Department of Criminal Justice facilities for homicide (N = 14,752), with sentencing dates going back to 1990 and accounting for citizenship of each offender, this study uses multinomial logistic regression to explore whether immigrants receive significantly different sentences as suggested by the focal concerns perspective. This study, using a composite measure of immigration and race, finds mixed support for the idea that immigration is a uniquely relevant predictor of disparate sentencing outcomes. While Hispanic immigrants are more likely to have received a shorter sentence than White citizens, Hispanic citizens also received shorter sentences, suggesting that race and ethnicity are more relevant than immigrant status. Support for focal concerns theory is found through an evaluation of other legally relevant and extra-legal variables. Limitations and directions for future research are discussed

    Moessbauer Spectroscopy for Lunar Resource Assessment: Measurement of Mineralogy and Soil Maturity

    Get PDF
    First-order assessment of lunar soil as a resource includes measurement of its mineralogy and maturity. Soils in which the mineral ilmenite is present in high concentrations are desirable feedstock for the production of oxygen at a lunar base. The maturity of lunar soils is a measure of their relative residence time in the upper 1 mm of the lunar surface. Increasing maturity implies increasing load of solar wind species (e.g., N, H, and He-3), decreasing mean grain size, and increasing glass content. All these physicochemical properties that vary in a regular way with maturity are important parameters for assessing lunar soil as a resource. For example, He-3 can be extracted and potentially used for nuclear fusion. A commonly used index for lunar soil maturity is I(sub s)/FeO, which is the concentration of fine-grained metal determined by ferromagnetic resonance (I(sub s)) normalized to the total iron content (as FeO). I(sub s)/FeO has been measured for virtually every soil returned by the Apollo and Luna missions to the Moon. Because the technique is sensitive to both oxidation state and mineralogy, iron Moessbauer spectroscopy (FeMS) is a viable technique for in situ lunar resource assessment. Its utility for mineralogy is apparent from examination of published FeMS data for lunar samples. From the data published, it can be inferred that FeMS data can also be used to determine soil maturity. The use of FeMS to determine mineralogy and maturity and progress on development of a FeMS instrument for lunar surface use are discussed

    Moessbauer Mineralogy on the Moon: The Lunar Regolith

    Get PDF
    A first-order requirement for spacecraft missions that land on solid planetary objects is instrumentation for mineralogical analyses. For purposes of providing diagnostic information about naturally-occurring materials, the element iron is particularly important because it is abundant and multivalent. Knowledge of the oxidation state of iron and its distribution among iron-bearing mineralogies tightly constrains the types of materials present and provides information about formation and modification (weathering) processes. Because Moessbauer spectroscopy is sensitive to both the valence of iron and its local chemical environment, the technique is unique in providing information about both the relative abundance of iron-bearing phases and oxidation state of the iron. The Moessbauer mineralogy of lunar regolith samples (primarily soils from the Apollo 16 and 17 missions to the Moon) were measured in the laboratory to demonstrate the strength of the technique for in situ mineralogical exploration of the Moon. The regolith samples were modeled as mixtures of five iron-bearing phases: olivine, pyroxene, glass, ilmenite, and metal. Based on differences in relative proportions of iron associated with these phases, volcanic ash regolith can be distinguished from impact-derived regolith, impact-derived soils of different geologic affinity (e.g., highlands, maria) can be distinguished on the basis of their constituent minerals, and soil maturity can be estimated. The total resonant absorption area of the Moessbauer spectrum can be used to estimate total FeO concentrations

    Lepidocrocite to Maghemite to Hematite: A way to have Magnetic and Hematitic Martian Soil

    Get PDF
    We examined decomposition products of lepidocrocite, which were produced by heating the phase in air at temperatures up to 525 C for 3 and 300 hr, by XRD, TEM, magnetic methods, and reflectance spectroscopy (visible and near-IR). Single-crystal lepidocrocite particles dehydroxilated to polycrystalline particles of disordered maghemite which subsequently transformed to polycrystalline particles of hematite. Essentially pure maghemite was obtained at 265 and 223 C for the 3 and 300 hr heating experiments, respectively. Its saturation magnetization (J(sub s)) and mass specific susceptibility are approximately 50 A(sq m)/kg and approximately 40 cubic micrometers/kg, respectively. Because hematite is spectrally dominant, spectrally-hematitic samples (i.e., characterized bv a minimum near 860 nm and a maximum near 750 nm) could also be strongly magnetic (J(sub s) up to approximately 30 A(sq m)/kg) from the masked maghemite component. TEM analyses showed that individual particles are polycrystalline with respect to both maghemite and hematite. The spectrally-hematitic and magnetic Mh+Hm particles can satisfy the spectral and magnetic constraints for Martian surface materials over a wide range of values of Mh/(Mh+Hm) and as either pure oxide powders or (within limits) as components of multiphase particles. These experiments are consistent with lepidocrocite as the precursor of Mh+Hm assemblages on Mars, but other phases (e.g., magnetite) that decompose to Mh and Hm are also possible precursors. Simulations done with a copy of the Mars Pathfinder Magnet Array showed that spectrally hematitic Mh+Hm powders having J(sub s) equal to 20.6 A(sq m)/kg adhered to all five magnets

    Backscatter Mossbauer Spectrometer (BaMS) for extraterrestrial applications

    Get PDF
    Mossbauer spectroscopy is a nuclear gamma resonance technique particularly well suited to the study of materials that contain iron (Fe-57). It can provide information on the oxidation state of iron as well as the type and proportion of iron-containing mineral species in a sample of interest. Iron Mossbauer spectroscopy (FeMS) has been applied to samples believed to have come from Mars (SNC meteorites) and has been helpful in refining the choice among putative Martian surface materials by suggesting a likely nanophase component of the Martian regolity. FeMS spectrum of a Martial analogue material (Hawaiian palagonite) is shown; it is dominated by ferric-bearing phases and shows evidence of a nanophase component. FeMS has also been applied to lunar materials. It can be used to measure the maturity of lunar surface material and has been proposed as a prospector for lunar ilmenite, an oxygen resource mineral. Several years ago we suggested a backscatter Mossbauer spectrometer (BaMS) for a Mars rover mission. Backscatter design was selected as most appropriate for in-situ application because no sample preparation is required. Since that time, we have continued to develop the BaMS instrument in anticipation that it would eventually find a home on a NASA planetary mission. Gooding proposed BaMS as a geochemistry instrument on MESUR. More recently, an LPI workshop has recommended that BaMS be included in a three-instrument payload on the next (1996?) lunar lander
    • …
    corecore