15,001 research outputs found

    Developing Scenarios for Product Longevity and Sufficiency

    Get PDF
    This paper explores the narrative of peoples’ relationships with products as a window on understanding the types of innovation that may inform a culture of sufficiency. The work forms part of the 'Business as Unusual: Designing Products with Consumers in the Loop' [BaU] project, funded as part of the UK EPSRC-ESRC RECODE network (RECODE, 2016) that aims to explore the potential of re-distributed manufacturing (RdM) in a context of sustainability. This element of the project employed interviews, mapping and workshops as methods to investigate the relationship between people and products across the product lifecycle. A focus on product longevity and specifically the people-product interactions is captured in conversations around product maintenance and repair. In exploring ideas of ‘broken’ we found different characteristics of, and motivations for, repair. Mapping these and other product-people interactions across the product lifecycle indicated where current activity is, who owns such activity (i.e. organisation or individual) and where gaps in interactions occur. These issues were explored further in a workshop which grouped participants to look at products from the perspective of one of four scenarios; each scenario represented either short or long product lifespans and different types of people engagement in the design process. The findings help give shape to new scenarios for designing sufficiency-based social models of material flows

    A landscape of repair

    Get PDF
    This paper reports on EPSRC-funded research that explores the role of repair in creating new models of sustainable business. In the lifecycle stage of repair we explore what 'broken' means and uncover the nature of local and dispersed repair activities. This in turn allows us to better understand how the relationship between products and people can help shape new modes of consumption. Therefore, narratives of repair are collected to identify diverse people-product interactions and illustrate the different characteristics of, and motivations for, repair. The paper proposes that mapping the different product-people interactions across the product lifecycle, particularly at the stage of fragile-functionality (performance or function failure, emotional disengagement, superseded technology) is important in understanding the potential for enduring products and their repair. Building a landscape of repair creates new opportunities for manufacture and for slowing resource loops across product lifetimes, which together provide a framework for a sufficiency-based model of production and consumption

    Synthesis and characterization of multiferroic BiMn7_7O12_{12}

    Full text link
    We report on the high pressure synthesis of BiMn7_7O12_{12}, a manganite displaying a "quadruple perovskite" structure. Structural characterization of single crystal samples shows a distorted and asymmetrical coordination around the Bi atom, due to presence of the 6s26s^{2} lone pair, resulting in non-centrosymmetric space group Im, leading to a permanent electrical dipole moment and ferroelectric properties. On the other hand, magnetic characterization reveals antiferromagnetic transitions, in agreement with the isostructural compounds, thus evidencing two intrinsic properties that make BiMn7_7O12_{12} a promising multiferroic material.Comment: 4 pages, 3 figure

    Evolutionary conservation of excision repair in Schizosaccharomyces pombe: Evidence for a family of sequences related to the Saccharomyces cerevisiae RAD2 gene

    Get PDF
    Cells mutated at the rad13 locus in the fission yeast, Schizosaccharomyces pombe are deficient in excision-repair of UV damage. We have cloned the S.pombe rad13 gene by its ability to complement the UV sensitivity of a rad13 mutant. The gene is not essential for cell proliferation. Sequence analysis of the cloned gene revealed an open reading-frame of 1113 amino acids with structural homology to the RAD2 gene of the distantly related Saccharomyces cerevisiae. The sequence similarity is confined to three domains, two close to the N-terminus of the encoded protein, the third being close to the C-terminus. The central region of about 500 amino acids shows little similarity between the two organisms. The first and third domains are also found in a related yet distinct pair of homologous S.pombe/S.cerevisiae DNA repair genes (rad2/YKL510), which have only a very short region between these two conserved domains. Using the polymerase chain reaction with degenerate primers, we have isolated fragments from a gene homologous to rad13/RAD2 from Aspergillus nidulans. These findings define new functional domains involved in excision-repair, as well as identifying a conserved family of genes related to RAD2

    5-Amino-2,4,6-triiodo­isophthalic acid monohydrate

    Get PDF
    The title compound, C8H4I3NO4·H2O, shows an extensive hydrogen-bond network; in the crystal structure, mol­ecules are linked by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds involving all possible donors and also the water mol­ecule

    Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage

    Get PDF
    The rad2 mutant of Schizosaccharomyces pombe is sensitive to UV irradiation and deficient in the repair of UV damage. In addition, it has a very high degree of chromosome loss and/or nondisjunction. We have cloned the rad2 gene and have shown it to be a member of the Saccharomyces cerevisiae RAD2/S. pombe rad13/human XPG family. Using degenerate PCR, we have cloned the human homolog of the rad2 gene. Human cDNA has 55% amino acid sequence identity to the rad2 gene and is able to complement the UV sensitivity of the rad2 null mutant. We have thus isolated a novel human gene which is likely to be involved both in controlling the fidelity of chromosome segregation and in the repair of UV-induced DNA damage. Its involvement in two fundamental processes for maintaining chromosomal integrity suggests that it is likely to be an important component of cancer avoidance mechanisms

    Tetragonal to Orthorhombic Transition of GdFeAsO Studied by Single-Crystal Synchrotron X-Ray Diffraction

    Full text link
    A study of the tetragonal to orthorhombic phase transition of GdFeAsO is presented. Planes of the reciprocal space were reconstructed form single-crystal synchrotron X-ray diffraction data. By cooling below the structural transition temperature splitting of the Bragg reflections was observed corresponding to four different twin domain orientations. A model was developed to quantify the distortion of the lattice from the position of the splitted reflections relative to each other. Constrained 2D-Cauchy fits of several splitted reflections provided positions of the reflections. The influence of the structural distortion was detectable already above the structural transition temperature hinting at fluctuations in the tetragonal phase.Comment: 6 pages, 6 figure

    ANODE: anomalous and heavy-atom density calculation

    Get PDF
    The program ANODE determines anomalous (or heavy-atom) densities by reversing the usual procedure for experimental phase determination. Instead of adding a phase shift to the heavy-atom phases to obtain a starting value for the native protein phase, this phase shift is subtracted from the native phase to obtain the heavy-atom substructure phase
    corecore