2,755 research outputs found

    BIOTECHNOLOGY REGULATIONS AND THE WTO

    Get PDF
    This paper examines the regulation of trade in genetically modified organisms (GMOs) by the World Trade Organization (WTO). Despite rapid adoption of GMOs by a few exporters, many importers have developed relatively restrictive procedures for pre-market approval of GMOs, and are introducing mandatory labeling. While exporters have yet to seek a ruling from the WTO on these regulations, a trade dispute over GMOs is likely to occur before too long. Exporting countries will likely argue that importing countries' regulations are too restrictive, given existing scientific knowledge of the safety of current GM crops, and that labeling of GM foods is unnecessary due to the fact that they are typically similar to their conventional counterparts. In response, importing countries will likely argue that existing scientific knowledge about GMOs is insufficient, and that a precautionary approach to approval is appropriate. In addition, importers will claim that labeling is necessary due to the fact that they are not equivalent to their conventional counterparts, and consumers have a right to choose whether or not consume such foods, be it for religious, ethical or other reasons. In the event a panel will have decide on whether GM and non-GM products are "like goods", whether adequate risk assessment was undertaken for any regulation introduced for health reasons, whether labels constitute the "least trade distorting" way of meeting legitimate objectives, and whether regulations imply discrimination among suppliers or in favor of domestic producers. Experience with the SPS and TBT Agreements has not been extensive enough to indicate how such a panel might rule. But one can also view the issue in broader trade policy terms, as a balance between market access obligations that need to be adjusted as domestic regulations on new technologies are developed. A possible solution is for importing countries with tough GM regulation and mandatory labeling to offer reciprocal increases in market access for non-GM foods in compensation for any losses of market access for GM foods. There is a question though of whether such "rebalancing" is actually practical, and it would certainly add to the costs of dispute settlement in the WTO, but it may be the only viable solution in the long run if the WTO is not to be dragged in to evaluating social and ethical bases for regulation of biotechnology.Biotechnology, regulation, trade, WTO, International Relations/Trade, Research and Development/Tech Change/Emerging Technologies,

    Cross-correlation Weak Lensing of SDSS galaxy Clusters II: Cluster Density Profiles and the Mass--Richness Relation

    Get PDF
    We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. 2007 (Paper I). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of 13% including both statistical and systematic errors. We also constrain the halo concentration parameter and halo bias as a function of cluster mass; both are in good agreement with predictions of LCDM models. The methods employed here will be applicable to deeper, wide-area optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey, the Large Synoptic Survey Telescope and space-based surveys

    Education Leaders Perspectives on Social & Emotional Learning

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu.This peer-reviewed series of issue briefs is designed to help people understand, connect and champion social and emotional learning in a variety of settings and from a variety of perspectives

    Dynamical Confirmation of SDSS Weak Lensing Scaling Laws

    Get PDF
    Galaxy masses can be estimated by a variety of methods; each applicable in different circumstances, and each suffering from different systematic uncertainties. Confirmation of results obtained by one technique with analysis by another is particularly important. Recent SDSS weak lensing measurements of the projected-mass correlation function reveal a linear relation between galaxy luminosities and the depth of their dark matter halos (measured on 260 \hinv kpc scales). In this work we use an entirely independent dynamical method to confirm these results. We begin by assembling a sample of 618 relatively isolated host galaxies, surrounded by a total of 1225 substantially fainter satellites. We observe the mean dynamical effect of these hosts on the motions of their satellites by assembling velocity difference histograms. Dividing the sample by host properties, we find significant variations in satellite velocity dispersion with host luminosity. We quantify these variations using a simple dynamical model, measuring \mtsd a dynamical mass within 260 \hinv kpc. The appropriateness of this mass reconstruction is checked by conducting a similar analysis within an N-body simulation. Comparison between the dynamical and lensing mass-to-light scalings shows reasonable agreement, providing some quantitative confirmation for the lensing results.Comment: 7 pages, 3 figures, accepted for publication in ApJ Letter

    Cross-correlation Weak Lensing of SDSS Galaxy Clusters III: Mass-to-light Ratios

    Get PDF
    We present measurements of the excess mass-to-light ratio measured aroundMaxBCG galaxy clusters observed in the SDSS. This red sequence cluster sample includes objects from small groups with masses ranging from ~5x10^{12} to ~10^{15} M_{sun}/h. Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean \Delta \rho(r) = \rho(r) - \bar{\rho} for clusters in bins of richness and optical luminosity. We also measure the excess luminosity density \Delta l(r) = l(r) - \bar{l} measured in the z=0.25 i-band. For both mass and light, we de-project the profiles to produce 3D mass and light profiles over scales from 25 kpc/ to 22 Mpc/h. From these profiles we calculate the cumulative excess mass M(r) and excess light L(r) as a function of separation from the BCG. On small scales, where \rho(r) >> \bar{\rho}, the integrated mass-to-light profile may be interpreted as the cluster mass-to-light ratio. We find the M/L_{200}, the mass-to-light ratio within r_{200}, scales with cluster mass as a power law with index 0.33+/-0.02. On large scales, where \rho(r) ~ \bar{\rho}, the M/L approaches an asymptotic value independent of cluster richness. For small groups, the mean M/L_{200} is much smaller than the asymptotic value, while for large clusters it is consistent with the asymptotic value. This asymptotic value should be proportional to the mean mass-to-light ratio of the universe . We find /b^2_{ml} = 362+/-54 h (statistical). There is additional uncertainty in the overall calibration at the ~10% level. The parameter b_{ml} is primarily a function of the bias of the L <~ L_* galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in the same bandpass we find \Omega_m/b^2_{ml} = 0.02+/-0.03, independent of the Hubble parameter.Comment: Third paper in a series; v2.0 incorporates ApJ referee's suggestion

    Studying Inter-Cluster Galaxy Filaments Through Stacking GMBCG Galaxy Cluster Pairs

    Full text link
    We present a method to study the photometric properties of galaxies in filaments by stacking the galaxy populations between pairs of galaxy clusters. Using Sloan Digital Sky Survey data, this method can detect the inter-cluster filament galaxy overdensity with a significance of 5σ\sim 5 \sigma out to z=0.40z=0.40. Using this approach, we study the grg-r color and luminosity distribution of filament galaxies as a function of redshift. Consistent with expectation, filament galaxies are bimodal in their color distribution and contain a larger blue galaxy population than clusters. Filament galaxies are also generally fainter than cluster galaxies. More interestingly, the observed filament population seems to show redshift evolution at 0.12<z<0.400.12<z<0.40: the blue galaxy fraction has a trend to increase at higher redshift: a filament "Butcher Oemler Effect". We test the dependence of the observed filament density on the richness of the cluster pair: richer clusters are connected by higher density filaments. We also test the spatial dependence of filament galaxy overdensity: this quantity decreases when moving away from the inter-cluster axis between a cluster pair. This method provides an economical way to probe the photometric properties of filament galaxies and should prove useful for upcoming projects like the Dark Energy Survey.Comment: Submitted to Ap

    A psychology based approach for longitudinal development in cognitive robotics.

    Get PDF
    A major challenge in robotics is the ability to learn, from novel experiences, new behavior that is useful for achieving new goals and skills. Autonomous systems must be able to learn solely through the environment, thus ruling out a priori task knowledge, tuning, extensive training, or other forms of pre-programming. Learning must also be cumulative and incremental, as complex skills are built on top of primitive skills. Additionally, it must be driven by intrinsic motivation because formative experience is gained through autonomous activity, even in the absence of extrinsic goals or tasks. This paper presents an approach to these issues through robotic implementations inspired by the learning behavior of human infants. We describe an approach to developmental learning and present results from a demonstration of longitudinal development on an iCub humanoid robot. The results cover the rapid emergence of staged behavior, the role of constraints in development, the effect of bootstrapping between stages, and the use of a schema memory of experiential fragments in learning new skills. The context is a longitudinal experiment in which the robot advanced from uncontrolled motor babbling to skilled hand/eye integrated reaching and basic manipulation of objects. This approach offers promise for further fast and effective sensory-motor learning techniques for robotic learning
    corecore