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Abstract

This thesis is concerned with the emergence of communication in ar-
tificial agents as an integrated part of a more general developmental
progression. We demonstrate how early gestural communication can
emerge out of sensorimotor exploration before moving on to linguistic
communication. We then show how communicative abilities can feed

back into more general motor learning.

We take a cumulative developmental approach, with two different
robotic platforms undergoing a series of psychologically inspired de-
velopmental stages. These begin with the robot learning about its own
body’s capabilities and limitations, then on to object interaction, the
learning of proto-imperative pointing and early language learning. Fi-
nally this culminates in more complex object interaction in the form
of learning to build stacks of objects with the linguistic capabilities

developed earlier being used to help guide the robot’s learning.

This developmental progression is supported by a schema learning
mechanism which constructs a hierarchy of competencies capable of
dealing with problems of gradually increasing complexity. To allow
for the learning of general concepts we introduce an algorithm for the
generalisation of schemas from a small number of examples through

parameterisation.

Throughout the robot’s development its actions are driven by an in-
trinsic motivation system designed to mimic the play-like behaviour
seen in infants. We suggest a possible approach to intrinsic motiva-
tion in a schema learning system and demonstrate how this can lead
to the rapid unsupervised learning of both specific experiences and

general concepts.
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Chapter 1

Introduction

This thesis is concerned with the emergence of communication in artificial agents
as an integrated part of a more general developmental progression.

Within this thesis we investigate two main aspects of communication, early
gestural communication in the form of pointing and spoken language. In dealing
with spoken language we focus on the association of words with both specific
prior experiences and with more general concepts, drawing inspiration from the
acquisition of language in infants. While we do not consider grammatical aspects
of language learning here, we do believe that the schema learning mechanism
employed within this work would lend itself well to this form of investigation in
the future.

In describing communication as “emerging” we refer to the manner in which
behaviours serving a communicative purpose develop out of a number of general
purpose, non-communication specific faculties. For example in the early stages
of development the combination of reaching behaviour directed towards distant
objects whilst being in the presence of other social agents can result in the robot
learning a pointing gesture.

We begin with our robots, shown in figure 1.1, having very little knowledge of
their own bodies or of their environment and take them first through some low
level motor learning, then on to gradually more complicated scenarios in which
they can interact with objects and people.

However, we are not solely interested in just how communication can emerge,
but also how this ability can feed back into more general learning. To this end

we take the robot’s development beyond the initial introduction of language into

21



1. INTRODUCTION

Figure 1.1: The two robot platforms upon which our experiments have been
carried out. Left: An Adept six-axis arm with a single camera vision system.

Right: An iCub humanoid robot with 53 degrees of freedom and stereo vision.

22



1.1 Motivation

further motor learning, with the newly developed linguistic skills being used as a
tool to help simplify these new and more complex scenarios.

An important consideration in a system attempting to partially mimic the
learning stages of a child is how that agent’s actions should be motivated. Play
is an important part of any child’s development, and we believe that it forms the
basis of the learning mechanism used for training many of the basic competencies
that we then rely on in later life.

While definitions of exactly what constitutes play behaviour vary, for our
purposes we interpret play as being any intrinsically motivated behaviour. This
is any behaviour that does not contribute to the satisfaction of some primary
need or work toward some externally generated goal. The intrinsic motivation
within our system primarily comes from an implicit goal of discovering further
information about the world, resulting in our robots devising hypotheses about
their experiences and then immediately being able to test them out in various
different scenarios.

In this introductory chapter we outline the underlying theories that motivate
our approach to this problem. We then discuss a number of key characteristics
which we believe would be beneficial in any system attempting to investigate this
area. The four main contributions made by this thesis are then briefly outlined.
Finally we describe the general content to be found in the following chapters and

the publications that have arisen out of the work undertaken as part of this thesis.

1.1 Motivation

We believe that for robots to be able to achieve a more advanced capacity for
communication their entire concept of language must be firmly rooted in their
sensorimotor experiences of the world. Rather than taking an existing robotic
system and attempting to add the capacity for language on top we are more
interested in having communicative abilities arise out of a more general learning
system.

Instead of limiting our view of communication to linguistic acts we consider
first simple forms of pointing which may emerge out of earlier play behaviour and

form a stepping stone towards more expressive forms of communication.
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1. INTRODUCTION

To investigate this emergence of social understanding we create a system ca-
pable of experiencing a number of developmental stages. These stages are not
limited only to those relating to communication as we believe that these earlier
stages of learning play an important role in creating the mental competencies
required for more social learning.

This social learning is then able to feed back into other aspects of the robot’s
learning. This allows for other agents (be they people, or other robots) to help
scaffold the robot’s mental processes through purely linguistic means, for example
by guiding the robot’s attention to a specific action or object at a crucial point
in its exploration.

We believe that a system attempting to mimic the staged development seen
in infants should also take advantage of the play driven learning behaviour that
appears to serve human infants so well. To this end we have devised an approach
to intrinsically motivated behaviour that allows the agent to generate actions
relevant to the current environment without having any explicit goal, the play
behaviour has the implicit goal of learning more about the environment instead
of more traditional task specific goals generated extrinsically.

Children play throughout their development with ever increasing complexity,
beginning with simple motor babbling and building up to complex play involving
precise and skillful motor abilities, problem solving and social interaction. In a
less ambitious but similar way our robot is able to make use of the early skills
it develops to enhance the range of play behaviour available to it in later stages,
thus building up a hierarchy of competencies capable of dealing with ever more

complex environments.

1.2 Approach

In approaching this problem we have identified a number of characteristics that
we believe would be particularly beneficial. These characteristics are outlined
below and have informed the selection of techniques used to support our learning

process.
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1.2 Approach

1.2.1 Cumulative learning

Notable in human development is the way in which an infant’s development may
be classified into coarse stages, with each following stage building upon the com-
petencies mastered in the previous one.

By its nature any system taking a staged developmental approach will need
the capacity to learn cumulatively, as one of the key features of learning in de-
velopmental stages is that each successive stage builds upon the learning from
earlier stages.

Throughout our experiments we expose our robots to problems of ever in-
creasing complexity, using the knowledge gained in earlier scenarios these new
scenarios can then be interpreted in terms of prior experiences. This greatly re-
duces the complexity of the learning problem and allows the robot to focus on

the aspects of the environment that are novel.

1.2.2 On-line learning from sparse data

To be able to interact socially with other agents, especially humans, it is impor-
tant that the robot be capable of learning quickly from a very small number of
examples. A human teacher would typically lack the inclination to perform the
same act hundreds or thousands of times, so learning algorithms that require a
large number of samples are inappropriate for this domain.

Embodied agents have the ability to create the conditions necessary to test
their own hypotheses. With this facility in mind we favour an approach to learning
which results in the fast generation of general hypotheses from sparse data. We
then allow the robot to conduct its own tests of these hypotheses through further

action to determine their reliability.

1.2.3 Platform agnostic

The system should not be tied to a specific physical embodiment, as such it
should have as little prior knowledge about its body as possible. Some amount
of platform specific integration will be necessary to encode sensor information
and possible actions, but the overall learning mechanism should not make any

hardware specific assumptions.
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To demonstrate this capacity within our system we have made use of two real
robots, an Adept arm and camera system and an iCub humanoid robot, and two
simulated robots which model the physical robots.

In each case the agent begins with very little knowledge about the world
and learns how it can interact using the capabilities available to the physical
embodiment it has been endowed with.

This goes beyond good engineering practices, also serving two valuable sci-
entific purposes: it gives us the ability to place two different robotic systems in
similar scenarios and discover how the representations arrived at by the agents
differ; it also provides a check against the unintentional tailoring of our learning

mechanism to a specific embodiment.

1.2.4 Self motivation

We believe that intrinsically motivated play behaviour is vital to learning in in-
fants and that a similar approach can be beneficial to robotic agents. Children
and young animals both engage in play-like behaviour, performing seemingly
useless actions that do nothing to aid in the satisfaction of the more traditional
primary needs (food, shelter, etc.) that are often the focus of extrinsically mo-
tivated learning mechanisms. However, while not directly contributing to the
immediate satisfaction of any of these needs, play behaviour offers the agent, be
they human, animal or robot, the ability to learn and practice new skills and
competencies which may in the future prove to be very useful in achieving an
extrinsically motivated goal.

A child learning to accurately hit the trunk of a tree when throwing stones
may serve no direct purpose, but in the future when the child grows hungry
that same skill may be employed to knock fruit from the branches of a tree that
would otherwise be out of reach. It is not necessary that the child have this
distant future goal of food collection in mind when first learning this skill, simply
developing a new skill and becoming more proficient with it is suitably satisfying
even in the absence of any more concrete goal.

In the absence of any explicit goals the robot should perform actions relevant
both to the current environment and the robot’s internal mental state, leading
to the learning of novel information about the world. By allowing the robot to

direct its own attention to the elements of the environment it finds most relevant
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to its past experience it is able to perform its own experiments to determine the
properties of the world and how objects and other agents within the world may

be interacted with.

1.3 Contributions

The overarching theme of the research undertaken as part of this thesis has been
how communication can first emerge and then influence developmental learning.
A number of advances have been made to support this line of research, both in
terms of the high level developmental stages experienced by our robots and in
terms of advances to the learning and motivational mechanisms employed. The
four key contributions made are introduced below and then discussed further in
chapter 6.1.

1.3.1 Developmental progression

In this work we propose a developmental progression for robotic agents inspired by
relevant psychological literature. The proposed progression focuses on a gradual
transition from a ‘newborn’ state, in which the robot has little understanding of
the world or of its own sensorimotor systems, towards the capacity for interacting
with objects and understanding simple speech.

As part of this transition we investigate the possible emergence of pointing
as an early communicative act resulting from prior learning experiences with the
motor system.

We take a staged learning approach based around constraints, either in the
form of reduced sensory input or simplified environments, which are lifted as the
robot becomes habituated to its current stage of development.

In chapter 5.4 we show that the use of a staged developmental progression
simplifies a number of problems allowing for expressive representations of both
object and social interaction to emerge faster than would otherwise be possible
with a similar learning mechanism.

At a high level the stages encountered by the robot can be summarised as:

e Motor babbling — In which the robot discovers the movements possible in

its motor system.

27



1. INTRODUCTION

e Motor vision mapping — The robot learns the visual result of the movements

learnt in the prior stage.

e Object interaction — Objects are introduced for the robot to interact with

through touching, grasping, moving and dropping.

e Proto-imperative pointing — In attempting to reach towards distant objects
the robot discovers the act of pointing and finds that this can elicit assis-

tance from other agents.
e Single word speech — Verbs and nouns are introduced separately.

e Multi-word speech — Verbs and nouns are combined to form simple sen-

tences.

This progression is discussed in detail in chapter 2.

1.3.2 Algorithm for schema generalisation through pa-

rameterisation

To allow for the emergence of general schemas representing a class of possible
actions we devised a generalisation mechanism that makes use of previous expe-
rience of similar actions to form hypotheses as to how these actions affect the
world.

With a small number of examples the system is capable of forming generalised
representations of its actions that allow it to predict the effects of an action in
a novel scenario. This predictive capacity then allows the robot to plan more
complex actions involving the use of multiple generalised schemas to achieve
increasingly more advanced behaviours.

Chapter 3.6 covers the implementation of this algorithm, while 5.4 gives the
results of a number of experiments which make use of this functionality and

discusses the various implications of it.

1.3.3 Associated observations in schema learning

Causal schemas track information relating to the result of actions and the pre-

conditions necessary for these actions to be successful. We have extended this
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formalism to include the notion of associated observations which are events that
may occur concurrently with an action but are neither a direct result of it nor a
requirement for it to take place. This is particularly useful in the case of language
which may relate to some aspect of the world or of the action being performed
but is not itself directly responsible for a change in the environment.

Further discussion of this is found in chapter 3.2.4, while 5.9 shows the utility

of this in the context of language learning.

1.3.4 Intrinsically motivated schema learning

The main driving force behind action within the framework is an intrinsic moti-
vation system which excites schemas based on a combination of the novelty of the
current experience and the similarity to past experiences. A particular sensorimo-
tor memory is said to be excited if it partially or completely matches sensations
currently being experienced. The level of excitation is determined by the novelty
of the sensation combined with the similarity to a remembered sensation. The
purpose of this excitation system is to steer the robot towards actions most likely
to result in new learning experiences.

This mechanism provides the basis for our play behaviour — instead of act-
ing towards some explicit external goal the robot’s motivations steer it towards
exploring the different ways in which it can interact with the environment. Com-
bined with the cumulative learning approach this intrinsic motivation system
often results in the selection of actions learned in earlier stages of development
that have a high likelihood of being relevant to the aspects of the environment
that had previously not been experienced. This results in the robot quickly learn-
ing how to represent more complex interactions which can then be used by the

robot as a starting point for investigating the next stage of its development.

1.4 Thesis structure

A general guide to the content of each of the following chapters is outlined below:
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1.4.1 Chapter 2: Developmental Learning

In this chapter we outline the developmental progression undertaken by our robots
with reference to relevant developmental psychology literature and describe past
robotic projects which have taken a similar approach. We also discuss the psy-

chological inspiration for our intrinsically motivated play behaviour.

1.4.2 Chapter 3: Schema Learning

This chapter introduces the learning mechanism we have employed to support
our investigation. We begin by discussing the prior use of schema models in the
fields of psychology and computational modeling and then the introduction of
methods for learning new schema models in robotic systems. We draw parallels
between our schema system and aspects of the human brain. We then discuss
the details of our implementation of the schema learning framework including
the introduction of our generalisation mechanism, associated observations and an

algorithm for intrinsic motivation based selection of schemas.

1.4.3 Chapter 4: Robotic Platforms

We describe our two robotic platforms, an Adept arm and camera system and
an iCub humanoid robot, along with two simulated systems based upon these
robots. We then describe the overall system architecture of which our schema

learning system is a part.

1.4.4 Chapter 5: Experiments & Interpretation of Results

This chapter describes the experiments we performed upon the robots, which
increase in complexity following the developmental progression outlined in chapter
2. We discuss the implications of these results and where possible we compare

the differences in representation arrived at by the two different robots.

1.4.5 Chapter 6: Conclusions

In this chapter we summarise the contributions initially outlined in this introduc-
tion, drawing on illustrative examples from the experiments in chapter 5. Finally

we discuss both a number of specific improvements that could be made to the
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schema learning framework and some higher level suggestions of new investiga-

tions that could be made based around this work.

1.5 Publications

Parts of this thesis have been published in the following conference papers, copies

of which can be found in appendix A:

e M. T. Sheldon and M. Lee. A developmental approach to the emergence of
communication in socially situated embodied agents. In Proceedings of the
Ninth Annual IEEE International Conference on Development and Learn-
ing, pages 204 — 210. IEEE, 2010.

e M. T. Sheldon and M. Lee. PSchema: A developmental schema learning
framework for embodied agents. In Proceedings of the IEEE Joint Interna-
tional Conference on Development and Learning, and Epigenetic Robotics,
7 pages, IEEE, 2011.

e M. Lee, J. Law, P. H. Shaw and M. T. Sheldon. An infant inspired model of
reaching for a humanoid robot. In Proceedings of the IEEE Joint Interna-

tional Conference on Development and Learning, and Epigenetic Robotics,
6 pages, IEEE, 2012.

Additionally this work has been made use of in two European Commission
Framework 7 projects, Emergence of communication in Robots through Senso-
rimotor and Social Interaction (ROSSI) and Intrinsically Motivated Cumulative
Learning Versatile Robots (IM-CLeVeR). This usage is described further in the

public deliverables of those two projects.
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Chapter 2

Developmental Learning

The developmental psychologist Piaget [42, 90, 91] categorised infant development

into a series of stages, briefly summarised below:

1. Exercising sensorimotor schemata (0 - 1 months)

2. Primary circular reactions (1 - 4 months)

e Child stumbles on an act that produces a new experience then repeats

the act to reproduce the experience.
3. Secondary circular reactions (4 - 8 months)

e Child performs actions associated with objects purely upon seeing the

objects.

e Actions are possibly representations of the object rather than actual

attempts to act upon the object.
e Concept of object permanence begins to develop in this stage.

e Very beginnings of general space concept.
4. Co-ordination of secondary schemata (8 - 12 months)

e Much clearer evidence of intention.

e Larger separation between means and end. When completely sepa-
rated means alone becomes play. When differentiated but related,

problem-solving behaviour is exhibited.
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2. DEVELOPMENTAL LEARNING

‘Actions’ as representations from previous stage replaced by complex

neural patterns. ‘Motor meaning’ has become ‘symbolic meaning’.
Object permanence is context bound.

Object over-permanence - to the child the object still exists where it

was first seen, despite having observed them being moved away.

Cannot yet recognise what an object may look like from another point

of view.

Beginnings of understanding causality. Will wait for a parent to do

things for it.

Interest shifts from actions to effects.

5. Tertiary circular reactions (12 - 18 months)

Proto-declarative pointing behaviour is established by this stage.

Child engages in ‘experiments’ to discover new properties of objects

and events.

The ‘spectacle’ resulting from an action is now separate from the action
itself.

No longer exhibits over-permanence.
‘True’ imitation is exhibited.
Actively solicits help from adults.

Slowly ineffective actions drop away in a trial-and-error process.

6. Invention of new means through mental combination

Child can follow displacements of objects even when the displacement

takes place out of sight.

Internal symbols make memory of past events, anticipation of future

ones and reasoning about objects paths through space possible.
Can infer cause from effect and vice-versa.
Can imitate complex new models without extensive trial and error.

Can imitate non-human and non-living objects.
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e Can imitate absent objects.

When modelling infant development Piaget made extensive use of schemas,
units of knowledge associating actions and perceptions. These structures, and
their more recent use in the field of artificial intelligence, are discussed in more
detail in chapter 3.

The progression through the Piagetian stages can perhaps also be linked to
Vygotsky’s ‘zone of proximal development’ [111], although this concept is usually
applied to later development. The zone of proximal development being the dif-
ference between the already completed level of development and the potential for
achieving elements of the next developmental level given appropriate guidance or
‘scaffolding’ [112].

Erez and Smart [32] describe a number of different approaches to ‘shaping’
or scaffolding of an agent’s learning process. Both in terms of modifying internal
factors of the agent and modification of the environment in which the agent
interacts. Our system first undergoes learning constrained by internal factors as it
learns how its body functions. After this we scaffold the robot’s environment, first
introducing objects one at a time and then introducing spoken language alongside
the robot’s interactions. Finally we make use of the language understanding the
robot has developed to scaffold its behaviour through spoken guidance, while the
robot learns to form a stack of multiple objects.

Pardowitz and Dillmann [86] discuss an alternative Piagetian approach to
life-long learning based around a ‘programming by demonstration’ mechanism.
They introduce methods for determining the similarity of tasks, allowing the
system to make use of knowledge gained from completing related tasks to assist
with new ones. However a full developmental approach is not taken, with the
system starting with predefined high level knowledge about object relationships
and object classes.

Law, et al. [60] provide a detailed review of infant development summarised
into a timeline beginning with prenatal development and continuing through post-
natal development with a view towards robotic implementations. While our own
work focuses on a postnatal period of development with certain capabilities such
as arm movements and hand motions already available to the robot, these need
not necessarily be considered as innate knowledge. Kuniyoshi and Sangawa [59]

show that basic motor patterns can emerge during prenatal development, this is
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2. DEVELOPMENTAL LEARNING

demonstrated through the simulation of a fetal model consisting of a musculo-
skeletal system with a basic nervous system suspended in a uterine environment.
So while we do provide a small number of basic motor primitives to our robots,
we do not argue that these are necessarily innate in children, and that rather
they may emerge during an earlier stage of prenatal development which is not
modelled within our own experiments.

Guerin [46] provides a survey of developmentally inspired approaches to ar-
tificial intelligence, although this focuses primarily on very early infant learning,
and excludes language learning. An earlier survey by Lungarella, et al. [67] does
include developmentally inspired language learning, but the majority of these
studies begin at a much later stage of development than is introduced here, with
many underlying competencies preprogrammed into the agents. In this work we
attempt to demonstrate how the learning of communication can be interwoven
with early motor learning. The sensorimotor experiences encountered in the ear-
lier stages provide a grounding for the linguistic aspects, which in turn can be
used for guiding the agent’s attention in further motor learning tasks.

Asada, et al. [4] survey the state of cognitive developmental robotics [5],
which has a strong focus on the development of neural representations through
interaction between the physical embodiment of the robot and the environment,
progressing from prenatal development onwards and continuing in to social de-
velopment. Unlike the earlier work surveyed by Lungarella, et al. this approach
attempts to bridge the gap between early developmental motor learning and later
social learning. Our work also attempts to bridge this gap, investigating how the
learning of early motor skills can influence communication in the form of pointing
and how later language learning can add another means by which a caregiver can
scaffold physical interactions, however we take a more symbolic approach drawing

on relevant psychological literature for inspiration.

2.1 Intrinsic motivation

When acting based upon intrinsic motivation, an agent performs actions moti-
vated by an internal sense of interest in that action itself, as opposed to acting

in an attempt to achieve some separate goal, as in the case of extrinsic motiva-
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2.1 Intrinsic motivation

tion [96]. Of particular interest to us is the intrinsic motivation of play behaviour
seen throughout a person’s life, but with special emphasis on infant play [61].

Oudeyer, et al. [81, 82, 83] summarise intrinsic motivation from both a psycho-
logical and robotic perspective, and attempt to classify the different approaches
taken. They also explore the intrinsic motivation of language learning rooted in
play and curiosity [80], using a framework based around ‘progress niches’, which
are similar to Vygotsky’s concept of the zone of proximal development. They
show how an intrinsic motivation system can allow a robot to self-organise its
learning process.

The intrinsic motivation system which drives action within the work presented
here is inspired by play behaviour seen in infants, which we view as playing an
important role in motivating learning. Rather than having explicit goals that the
robot tries to achieve, the motivation system makes the execution of actions rele-
vant to novel experiences interesting in an attempt to learn new ways of interact-
ing with the world. The motivation system attempts to select the schema which
has the most in common with the novel aspects of the environment currently
being experienced, in effect being reminded of actions that it had previously used
in a similar, but not identical, context. For example, when touching an object
for the first time the sensation may remind the robot of the feeling of touching
its own hand when performing grasping motions without objects present. The
triggering of the action associated with this memory then leads to the robot ex-
periencing new sensations related to holding an object. An additional schema
is then formed to represent this new experience. Implementation details of this
system can be found in chapter 3.4.

This approach differs from the use of intrinsic motivation within the rein-
forcement learning community [8, 99, 103] in which an internally generated signal
rewards a recent action and so motivates its repetition for further learning. By
contrast our motivation happens prior to an action taking place, the robot is
motivated to perform actions which remind it of some aspects of the current en-
vironment, previously performed actions have no effect on this motivation value
other than through the changes they make in the environment and through the
decreased novelty of the actions in circumstances that do not elicit further learn-

ing.
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Our implementation of intrinsically motivated play behaviour can also be
viewed in terms of Piagetian ‘assimilation’ and ‘accommodation’. Assimilation
is the process by which a child makes use of existing knowledge to interact with
the environment, while accommodation extends or modifies this knowledge to
represent previously unknown properties of the interaction. For example, a child
being introduced to a rattle may utilise its previous experience of grasping various
different objects to grip the rattle, this would constitute assimilation of the action
of grasping the rattle by its existing mental structures. During this interaction
the rattle might make unexpected sounds as the child moves it around, resulting

in accommodation taking place as the child learns this new effect.

2.2 Lift Constraint, Act, Saturate

The system implements a Lift Constraint, Act, Saturate (LCAS) [63, 64] loop to
artificially constrain the inputs to the robotic system and so reduce the complexity
of the learning required at each stage of the system’s development. Constraints
are placed upon the system’s sensory input and the system then operates in this
mode until there is little novel input being found. A constraint is then lifted,
allowing the system to build upon its knowledge from the previous stage whilst
being exposed to a more complex and detailed view of the world. In addition
to this we simplify the environment that the robot is initially exposed to, not
introducing other objects for it to interact with until it has had the opportunity
to learn how its own systems function and affect its senses, an approach similar

to the scaffolding performed by parents when helping children to learn.

By allowing the agent to habituate between developmental stages, the system
is given the opportunity to learn the different possible outcomes of any schemas
that might not be 100% reliable (for example, due to sensor noise or poor re-
peatability of motor actions in the hardware platform). Without this the system
may falsely attribute the sensory responses it receives that differ from the ex-
pected outcomes as being caused by an unrelated observation introduced during

the later learning stages.
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2.3 Developmental progression

The following six stages outline a possible robotic developmental progression lead-

ing from a ‘new born’ state to simple linguistic communication.

2.3.1 Motor babbling

In early infancy children produce and repeat rhythmic motions of their limbs [55],
conceptually similar to the repetitive vocal babbling that infants display when
learning to produce more meaningful linguistic sounds [78] and potentially sharing
the same underlying mechanism, with manual babbling possibly assisting in the
learning of vocal babbling [31, 66]. Iverson and Fagan [53] go on to suggest that
this relationship between manual and vocal babbling may form the basis for the
generation of spontaneous hand gestures alongside speech which carry on into
adulthood.

In this initial stage the robot has had no prior experience of the world or of
its own body. It performs spontaneous motor actions in order to discover the
properties of its motor systems and its anatomical constraints.

The form the motor babbling takes varies between the two robotic platforms.
The iCub begins by first learning eye and then head saccades, allowing it to
develop a gaze space based upon the combined head and eye positions. After this
it also performs reaching, pressing, grasping and releasing motions in the absence
of any objects. On the Adept robot this consists of making movements of the

arm and learning the different possible joint configurations.

2.3.2 DMotor vision mapping

Both robots then perform the previously learnt arm movements whilst fixating
upon either the hand in the case of the iCub, or the finger in the case of the
Adept. This gives the robots the opportunity to learn a mapping between the
movements made and the changes this creates in the robot’s vision system.

This allows the robots to reach out to touch (or point towards) objects which
are detected visually in the locations in which it has previously experienced its
own hand or finger. This results in visually elicited, but not visually guided [21],
reaching as a consequence of the intrinsic motivation system being excited by the

object’s presence in a location that the hand has previously reached towards.

39



2. DEVELOPMENTAL LEARNING

Further details on the motor babbling and vision mapping stages undergone

by the different robots can be found in chapter 4.

2.3.3 Object interaction

Once the robots have learnt the results of moving their end effectors into different
locations we introduce objects for them to interact with.

The Adept arm is only capable of reaching out to touch objects, however the
iCub also has the capacity to grasp, move, drop and press objects.

When first touching or grasping objects the robot receives new, unexpected,
sensations from its touch sensors. This leads to the formation of new schemas
representing this knowledge. Because of the way in which the intrinsic motivation
system favours both novel sensations and novel actions this leads to the robot
repeating these new interactions a number of times. Similar behaviour can be
seen in infants in what Piaget terms ‘primary circular reactions’.

Interest in performing these repeated actions will gradually diminish as they
become less novel, at which point the robot will begin exercising other schemas.
If the object is removed and the robot continues exercising its existing schemas,
the excitation produced by these schemas will also be reduced further. When the
object is then reintroduced to the robot it is exciting enough, in comparison to
other available actions, to draw the robot’s attention back to executing schemas
related to the object. This results in the robot exhibiting a behaviour that mimics

some aspects of the ‘secondary circular reactions’ in infants.

2.3.4 Failed grasping leading to pointing

Vygotsky suggested that pointing develops out of a failed grasping behaviour in
which the child attempts to reach for an object which is too far away and the
parent interprets this as the child pointing at a desired object and as such fetches
the object for the child, thus associating a new meaning with the act of reaching
for a distant object [65, 111]. Initially all social meaning of this act is inferred
entirely by the parent, the infant is making a real attempt to reach the object
and failing, but through the actions of the parent the infant comes to associate

the same communicative meaning.
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This has been classified by many researchers as proto-imperative pointing or
ritualised grasping, used by the child to indicate an object of desire to a nearby
adult. By around 12 months the child has also learnt to perform proto-declarative
pointing which is used to acquire joint attention on an object with an adult.
Masataka [70] provides evidence to indicate that proto-imperative pointing and
proto-declarative pointing may follow different developmental paths, with proto-
declarative pointing emerging out of the earlier index finger extension behaviour
that infants exhibit when exploring reachable objects. All pointing within this
study is modelled on proto-imperative pointing, with the robot using this pointing
gesture to request distant objects.

Povinelli, et al. [92] show that while chimpanzees raised in captivity can be
trained to perform proto-imperative pointing they do not appear to make the
jump to proto-declarative pointing.

Tomasello, et al. [109] argue that infants may possess a much deeper social
understanding at this stage than previously thought, able to communicate a great
deal through pre-linguistic gestures such as pointing.

In attempting to touch objects that lie outside of the robot’s work-envelope,
it incidentally performs what looks, to a human observer, like a pointing motion.
Through assistance from a human observer, fetching the indicated object for the
robot, the robot’s representation of this action moves away from being a direct

attempt at manipulating the world towards an attempt at social communication.

2.3.5 Language learning

Arbib [2] suggests a schema based model for the acquisition of language, dis-
cussing how a schema based interpretation can remove the need for an innate
universal grammar as proposed by Chomsky [20]. In this thesis we consider only
the association of words with sensorimotor experiences, but future work could
extend this to consider grammatical implications.

Iverson and Goldin-Meadow [54] describe the early developmental path of
infants learning to communicate verbally. They show that in most cases infants
follow a consistent progression from pointing to two word speech.

Dautenhahn and Billard [26] contrast robotic approaches based around either
Piagetian or Vygotskian ideas of social development. While our general approach

to infant development is highly influenced by Piagetian stages of development
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and schema based modelling, our view of social situated development is more
Vygotskian, in that we consider it to be of great importance to the emergence
of higher cognitive functions. As such we attempt to interweave general motor
learning and the learning of communication within this work, with each providing
influence upon the other.

Steels, et al. [106] show that the concept formation process of agents must
be based on similar sensor input and result in similar conceptual repertoires for
communication to develop in a population of agents. It also shows that once
a lexical system is in place it can overcome the randomness inherent in verbal
communication. A population of thousands of agents is used, although only
two agents are embodied at any one time. The large population allows for the
occurrence polysemy and gives the ability to study the resolution of the resulting
multiple meanings within the population.

In addition to this Steels has investigated evolutionary mechanisms for the
emergence of language within a population [105], looking at the possibilities of
horizontal and vertical transmission of language within a culture of agents and the
ways in which ‘{anguage games’ (patterns of joint linguistic behaviour) become
ritualised.

Oudeyer and Delaunay [79] extended Steels’ language experiment to add a
developmental learning aspect which regulates the growth of each agent’s lexicon
depending on their prior success with related meanings. This results in consider-
ably faster convergence upon a shared lexicon within the agent population.

Tikhanoff, et al. [108] demonstrate the learning of language on a simulated
iCub, after also learning reaching and grasping behaviours through the training
of neural networks. However the action selection performed is limited to a small
number of predefined sequences, either reaching, grasping or dropping an object.
In contrast our own approach, whilst also limited to similar basic actions, is
able to combine these in novel ways and learn the result of these new composite
interactions.

Fong, et al. [35] provide a survey of social robots and learning techniques
including scaffolding, direct tutelage, imitation and goal emulation. Within our
own experiments we focus primarily upon scaffolding, first of the environment that

the robot is exposed to and then later through linguistic means, offering guidance
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on actions which may provide further stimulation in more complex environments
through the use of language learnt during earlier stages of development.

Harnad [50] discusses the symbol grounding problem in the learning of lan-
guage. This covers the problem of how semantic interpretation can be made
intrinsic to the system, not just parasitic on the meanings in the minds of ob-
servers and suggests that symbols must be grounded in a behavioural system
that can describe the objects and states of affairs that a symbol refers to. We
attempt to achieve this within our own work by integrating the learning of com-
municative abilities, both gestural and linguistic, within our main sensorimotor
learning mechanisms. Making it possible for the meaning of words to emerge out
of related sensorimotor experiences.

Zlatev [115] explores the philosophical implications of the symbol grounding
problem and Searle’s argument that artificial systems do not posses any form
of communicative intention [100]. Zlatev concludes that by taking a Vygotskian
view that “intentionality, self-consciousness and meaning are real emergent prop-
erties arising from the dialectical interaction between specific biological structures
(embodiment) and culture (situatedness) through a specific history of development
(epigenesis)”, then an embodied, socially situated, developmental robot can po-
tentially be said to have intention.

Within our progression language learning is divided into two distinct stages,

outlined below.

2.3.5.1 Single word speech

The robot is provided with auditory input (reduced to a text token by speech
recognition software) while it acts upon different objects presented to it. The
words heard during these interaction may relate either to the object being acted
upon (such as that object’s name, or some properties of the object) or to the
action being performed.

During early language development infants acquire the ability to learn new
words from a very small number of examples, often referred to as ‘fast-mapping’ [17,
71], the meaning of these words can then be refined over subsequent exposure to
them in varying contexts. Yu and Smith demonstrate that both adults [113] and
12 month old infants [104] can make use of multiple encounters with words from

varying situations to help disambiguate their potential meanings. Yu, et al. [114]
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then go on to develop and compare a number of computational models, through
which they suggest that there may be a common mechanism supporting both the
hypothesis testing theory of language acquisition, in which the agent forms hy-
potheses in ambiguous circumstances which can later be tested, and associative
learning, in which statistics are built up over a number of experiences.

Within this work we implement an approach to learning based around the for-
mation of hypotheses from sparse data, used in both motor and language learn-
ing, which the robot is then able to test and refine through further interaction.
However the viability of these hypotheses is determined based on the statisti-
cal information accumulated during interactions with the environment and other
agents. This provides our robot with a similar capacity for the fast learning of
language from interaction with human social partners, with these early mappings

then being refined based upon further experience.

2.3.5.2 Multi-word sentences

Finally the learnt speech can be combined to allow the robot to react to simple
sentences. The combination of verbs and nouns or adjectives allows for more
refined selection of generalised schemas, specifying which possible interpretation
of a generalised action should be executed.

For example, hearing the words ‘grasp red’ causes the robot to select a pre-
viously learnt generalised grasping schema. This schema has the potential to be
instantiated in a number of different ways depending on the environment it is
being executed in. If multiple objects are present then the generalised grasping
schema could be used to grasp any of them, with the addition of the word ‘red’,
the instantiation of the grasping schema which includes interaction with the red

object becomes more exciting than other potential interpretations.
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Chapter 3

Schema Learning

In the broadest sense a schema is a grouping of information relating to a concept,
object or event which may be organised hierarchically. Structure of this sort was
first introduced by Kant [56] and has since seen considerable use in the field of
psychology as a tool for formalising models of behaviour and learning.

Bartlett played a large role in bringing the type of schema based reasoning
that is more familiar today into modern psychology with his investigation into
memory storage and recall in which he argued for the interpretation of memories
and their reconstruction based around a filter of previously learnt schemas [7].

In this work we deal primarily with causal schemas, relating to events. These
schemas are units of knowledge associating perceptions, actions and predictions.
If the environment is perceived to be in a certain state then taking an action
associated with this state should cause the environment to change to match the
sensor values specified in that schema’s prediction.

In its simplest form a causal schema consists of a set of pre-conditions, an
action and a set of post-conditions, providing a basic forward learning model. An

example of this schema interpretation can be seen in figure 3.1.

Pre-conditions Action Post-conditions
Object on table | Reach to object Object on table
Touching object

Figure 3.1: A high level example of a simple schema, as used in our learning

framework.
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Often in psychological and cognitive modelling, schema populations are con-
structed manually and begin at higher levels of abstraction than we would typi-
cally see in a robotic system. In this work we concern ourselves with the automatic
learning of schemas, beginning with very low level motor movements and building
up towards more general high level concepts.

Arbib builds his initial computational schema interpretation based upon out-
put feature clusters [1], which encode the features relevant for specific interactions
between an agent and an object. Later he expands on this [2] and discusses how
schemas can form a useful bridge between lower level computational implemen-
tations, in his example neural networks, and higher level psychological analysis.

An early computational approach to the learning of schemas was introduced
by Becker [9] in his JCM architecture. In contrast to Drescher’s [30] later for-
malism of pre-condition, action, post-condition triplets with sensory information
consisting of vectors of binary sensors, the kernels which Becker’s schemas were
constructed from encapsulated either sensory information or actions in any order.
While they can be ordered to mimic Drescher’s formalism, as shown in figure 3.2,
they can also be ordered to contain multiple intermixed actions and sensations,

as in the example in figure 3.3.
<SensoryKernel> — <ActionKernel> = <ResultingSensoryKernel>

Figure 3.2: An example of a Becker-style schema which matches the pre-condition,

action, post-condition definition of a schema.

<LiftBall> — <BalllsLight> — <ThrowBall> = <BalllsFarAway>

Figure 3.3: An example of a Becker-style schema in which an action is used
to expose further sensory information prior to another action being taken which

provides the final result.

Drescher’s schema mechanism introduced the concept of ‘synthetic items’
which were schemas that could be used as pre-conditions within other schemas.
This gave his system the capacity to test for properties of the environment which
were not immediately accessible, whilst still preserving the pre-condition, action,
post-condition structure.

Using Becker’s model as a starting point, Bond and Mott [13] produced the

first example of schema learning within a robotic context, using schema learning

46



to enable a mobile robot to learn simple navigation activities aimed at alleviating
the robot’s ‘hunger’ by reaching a charging station.

A common criticism of Drescher’s approach is that it fails to scale to large
numbers of schemas due to the requirement of tracking and updating large amounts
of potentially unrelated sensor data for each schema. Foner and Maes [34] address
this by introducing some global heuristics which can be used to limit the amount
of information that requires updating. We take a similar approach limiting the
updating of schemas to only the currently active schema, however our excita-
tion mechanism is tested against all schemas, reintroducing this issue elsewhere.
Rather than limit the schemas tested for excitation we instead introduce a gen-
eralisation mechanism [102] which allows the system to create more expressive
hypotheses about the environment and its actions within it and so require far
fewer schemas to achieve this representation.

This approach to generalisation allows the system to build more complicated
skills based upon the execution of existing simpler schemas. Although based
around a neural network based approach, Ring’s [94] CHILD system introduces a
conceptually similar approach. By introducing the robot to problems of gradually
increasing complexity and allowing the knowledge gained from earlier learning to
influence the robot’s action we are able to incrementally construct a hierarchy of
skills.

Chaput, et al. [18, 19] created a neural based implementation of Drescher’s
original schema learning mechanism making use of self-organising maps. However
this approach still has the original limitation of only supporting binary sensors
within the system.

Holmes and Isbell [51] extended Drescher’s work to enable the use of continu-
ous value sensors. They showed that it was possible to model Partially Observable
Markov Decision Processes (POMDPs) via this mechanism.

Rather than use the binary sensor mechanism of Drescher or the continuous
value sensors that Holmes and Isbell employed our system makes use of discrete
sensor values, using a field based sensorimotor system which divides the sensor
and motor spaces into potentially connected fields.

Cooper and Shallice [23] produced a computation implementation of a schema
based theory of action selection, with which they performed a number of com-

putational modelling tasks. These tasks were based around a high-level scenario
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3. SCHEMA LEARNING

involving the use of actions and objects specifically relating to the task of prepar-
ing coffee. Cooper and Shallice [24] also demonstrate the continued utility of
explicit schema structures when compared to attempts to arrive at similar emer-
gent properties in artificial neural networks.

Cooper and Glasspool [22] used this framework in an early investigation into
the selection of schemas based upon the potential actions afforded by the envi-
ronment and discuss possible future enhancements to mimic child-like learning
more closely by employing a notion of ‘boredom’ to direct the agent towards more
novel stimuli. With the proposed enhancements this approach may be similar at
a high level to the intrinsically motivated play behaviour that drives our own
system.

Guerin [47, 48] has since used a schema based approach in a simple simulated
robotic environment, learning grasping tasks. He introduces ‘super-schemas’ as
a mechanism by which multiple schemas can be combined to avoid unnecessary
additional learning of related actions, for example moving a hand whilst also
gripping an object. This has some similarity with the use of target actions within
our generalisation mechanism, which allow the robot to make use of existing
schemas to assist in the execution of new, more general schemas.

Perotto, et al. [87, 88, 89] introduce a Constructivist Anticipatory Learn-
ing Mechanism (CALM), which makes use of a schema learning approach. The
schemas are organised in a tree hierarchy going from most general to most spe-
cific, making it possible for the system to fall back on more general solutions if a
specific one fails or is unavailable. As with Drescher’s schema mechanism this is
limited to binary sensor values.

Object Action Complexes (OACs) [38, 58] provide a similar formalism to
schemas, mapping actions performed upon objects to their effects, with the state
of the world resulting from the execution of an OACs kernel being stored in
terms of STRIPS rules [33, 74]. Although the OACs formalism itself allows for
many different implementation approaches, the method taken by Krueger, et
al. [58] requires the training of prediction functions using hundreds or thousands
of trials by the robot to converge on a low error rate. By contrast our approach,
based around staged learning with hypothesis generation from small numbers of
examples, allows for the learning of general action effects from very few trials.

We believe this makes our approach more suitable for social learning, as human
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social partners are only likely to repeat the same interaction a small number of
times.

Sahin, et al. [97] utilise another schema-like structure as part of an inves-
tigation in to affordances. An affordance represents the possible interactions
presented to a specific agent by properties of the environment [41], for example
to a human a small box may afford the interaction of lifting, however to a mouse
the same box may afford the interaction of climbing inside. Figure 3.4 shows the
general form of an affordance as modelled by Sahin, et al. When an agent per-
forms the specified behaviour upon an entity it expects to encounter the predicted
effect.

(effect, (entity, behaviour))

Figure 3.4: A general representation of an affordance as formalised by Sahin, et

al.

(lifted, (red-ball, lift-with-left-hand))

Figure 3.5: The affordance of lifting presented by a red ball.

Figure 3.5 shows a specific example of this form of affordance, in which a red
ball, when picked up will exhibit the effect of being lifted. Figure 3.6 then shows
a version of this affordance in which the colour component is discarded, allowing
the affordance to represent the lifting of any colour of ball. This has similarities
with our own generalisation process, however while both allow for the agent to
ignore properties which do not impact upon the action being undertaken, our
own parameterisation process allows more refined relationships to be discovered
between properties of the environment and the action undertaken. For example,
when learning to touch objects our system is able to arrive at a general schema
which states that if an object is observed in a location $z,$y and the robot
performs an action resulting in its hand also being observed in that same location
then it will receive a touching sensation from coming in to contact with the object.
In this way the $x,$y parameters observed from the object’s visual properties
are used as a component of the action. The process by which these generalised

schemas are formed and utilised is discussed further in section 3.6.
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(lifted, (<*-ball>, lift-with-left-hand))

Figure 3.6: An affordance repesenting the lifiting of any colour of ball.

Georgeon, et al. [39, 40] suggest an approach to learning involving intrinsic
motivation within a schema learning system. The schema definition employed
by Georgeon and Ritter differs from that used in the majority of Drescher in-
fluenced schema systems, rather than consisting of a set of pre-conditions, an
action and a set of post-conditions, their schemas are recorded in terms of pairs
of interactions, meaning that if the first interaction has occurred, then the sec-
ond interaction can be enacted. The intrinsic motivation aspect of this work is
inspired by the philosophical concept of ‘inversion of reasoning’ [27, 28]. Rather
than be rewarded for achieving a high level goal, the simplest interactions within
the framework are given predefined ‘proclivities’, for example moving forwards
may have a positive proclivity value, whereas encountering a wall may have a
negative value. The motivation for executing a high level schema, consisting of
multiple interactions, is then arrived at by the combined value of the low level
proclivities. The approach taken within our own system takes a different view
of intrinsic motivation, combining the novelty of current experiences with their
similarity to past experience, resulting in a selection mechanism which we believe

aids the agent in selecting actions likely to elicit further novel experiences.
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3.1 Cognitive model

/ Intrinsic \

Motivation & Objects location
Visual input Action Selection and features
selected
DL-PFC ‘ACC based on task
Action Priming Motor Execution
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Figure 3.7: Brain regions and their interactions relevant to motivation, action

planning and action execution. DL-PFC - Dorsolateral prefrontal cortex. ACC -

Anterior cingulate cortex.

When designing our schema system we have tried to draw inspiration from a
neuropsychological view of the human brain, a high level overview of the brain
regions and interactions that we base our system upon can be seen in figure 3.7.

This model focuses on brain regions relating to three main areas of interest
in our work: Motivation, action planning and action execution. The role of these

areas within that context is discussed below.

3.1.1 Basal ganglia

The basal ganglia play a role in both low level motor control and higher level
cognitive processes, being both connected with the motor system and connecting
via the thalamus to the cerebral cortex [73].

Redgrave, et al. [93] account for the basal ganglia’s activation in a wide range
of different scenarios by suggesting that they function as an action selection mech-
anism, mediating the access to both motor and cognitive systems between multi-
ple competing drives. They propose a winner-takes-all resolution to the conflict-
ing demands placed upon these systems, with this action selection taking place
at different levels of decision making. A similar approach is employed by our

schema framework, on one level the excitation system causes selection based on
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the saliency of stimuli when considered from the perspective of knowledge-seeking
play behaviour. While many schemas may be excited by the current stimuli only
the most salient one is selected for execution, the salience of the action and the
stimuli involved in the action are then decreased as they become less novel al-
lowing for the switching to the previously less exciting competing schemas. On a
higher level the chaining facility causes selection to be driven by a combination of
a schema’s ability to contribute towards the current goal and its reliability judged
by past experience.

In addition to this Graybiel [43] discusses the basal ganglia’s role in ’action
chunking’, forming higher level sensorimotor units out of low level information,

which can be seen as being in some ways analogous to our schema creation.

3.1.2 Dorsolateral prefrontal cortex

The dorsolateral prefrontal cortex (DL-PFC) plays a role in working memory [36],
attention and planning.

It is comparable to a number of aspects of our system, the novelty based
saliency mechanism which drives our intrinsic motivation, the schema chaining
functionality and the association of groups of observations.

Blumenfeld and Ranganath [10, 11] show how the DL-PFC may assist in
the association of information by keeping them bound together prior to being
recorded in long term memory. This is separate from the binding of coincidental
sensations that occurs in the hippocampus which allows for the recollection of a
specific event (episodic memory) and instead allows for encoding and retrieval of
sensory information relevant to the current action or task [6].

Buckner, et al. [15] demonstrate that there is decreased activation in this re-
gion for previously observed sensations (in their case specifically targeting verbal
input). The schema system also has a different response to new groups of ob-
servations and to previously experienced groupings. With new groupings new
schemas (or new ‘memories’) are formed, whereas when groups of observations
that have already been encountered are experienced again they instead trigger a
less exciting recollection of the previous actions that occurred alongside them.

Dagher, et al. [25] show that the DL-PFC plays an important role in the
sequencing of behaviours at a higher cognitive level than just motor planning,

finding that the level of activation in these region correlated with the complexity
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of the task being attempted. This has similarities with the schema chaining func-
tionality within our system, which allows it to connect together multiple schemas
to achieve a goal state. The previously mentioned capacity for considering task
specific information also comes into play when forming schema chains, as the
system must consider what information is relevant in each stage of its plan for
reaching the next stage in the chain.

MacDonald, et al. [68] reinforce the hypothesis that the anterior cingulate
cortex (ACC) monitors performance for inconsistencies and undesirable outcomes
and in such cases signals the DL-PFC, causing more high level planning to take
place. When the expected outcomes of an action fail to occur in our system this
triggers a re-evaluation of the schema chain currently being executed, allowing it

to reconsider the best course of action in a similar manner.

3.1.3 Thalamus

The Thalamus receives sensory information, reorganises it and then relays it to
different brain regions. Through cortical loops involving the basal ganglia and
DL-PFC it plays a role in many of the activities previously discussed in those
regions. The schema system separates out information based on the sensory
channel it was received via, allowing for both domain specific and multimodal

comparisons or generalisations.

3.1.4 Parietal areas

A large role of the parietal regions is the integration of information across multiple
different sensor modalities.

Grefkes, et al. show that the medial intraparietal cortex performs translations
between visual and motor spaces [44], and similarly the posterior parietal cortex
has previously been found to provide this functionality in macaques [16]. This
capacity for translating between the gaze space and the motor space is similar
to the motor-vision mappings which the system learns. With the Adept robot
these mappings are learnt within the schema memory, whereas with the iCub a
more comprehensive mapping process takes place more closely modelled upon the

behaviour of infants. Both of these approaches are described in chapter 4.
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The anterior intraparietal region in monkeys shows considerable activation
during tasks relating to the extraction of feature information about objects for
the purposes of grasping [77], with the human equivalent showing similar prop-
erties [45].

By extracting an object’s locational and feature information from the current
perception of the world, generalised schemas can be resolved to specific motor
actions tailored to the current task immediately prior to their execution by the

motor system.

3.1.5 The mirror neuron system

The mirror neuron system was first discovered in the brains of monkeys [37, 95]
and later studies showed a similar system at work in the human brain [75]. A
mirror neuron is a neuron which fires both upon the execution of an action and
upon the observation of another agent performing a similar action. Each mirror
neuron is paired with a canonical neuron, however the canonical neuron is only
activated during the execution of an action and not during its observation. This
has prompted speculation that the mirror neuron system may have been crucial
in the evolution of language [3].

Tettamanti, et al. [107] show that listening to action related sentences can
trigger a mirror neuron response in humans and Kohler, et al. [57] have previously
found that a noise related to an action can trigger a response in monkeys. This
adds further weight to the idea that the mirror neuron system encodes action
content at an abstract level and that this content can be activated auditorily.
This suggests that language is strongly linked to the sensorimotor system. While
it is possible that subjects were just engaged in motor imagery this is partially
ruled out by the lack of other brain activity which normally accompanies these
processes.

A study by Buccino, et al. [14] suggests that mirror neuron responses only
occur for actions that the observer can duplicate. For example, humans watching
a dog biting will show frontal parietal activity, while they will not when watching
a dog bark. This also shows that the mirror neuron system generalises to different
species, possibly suggesting that the goal of the action has a much greater effect

than the observation of the action itself.
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The goal directed nature of mirror neurons is further reinforced by a study
by Umilta, et al. [110] in which the neural response from monkeys was measured
when they observed the experimenter grasping an object and when they mimed
the grasps with no object present. It was found that the mimed grasp produced no
response, while the real grasp did. It was also found that if the view of the object
was occluded so the final stage of the grasp wasn’t visible then some response
was still produced, suggesting the goal was being inferred from the action.

Oztop and Arbib [84] hypothesise that the mirror neuron system may have
evolved to provide feedback for visually directed grasping with the social usage
being an exaptation! occurring when this became applied to the hands of others.

Oztop, Kawato and Arbib [85] provide a computationally guided review of
mirror neuron literature and provide box diagrams of a computational model
called the MNS model. Bonaiuto, et al. [12] have made attempts to extend this
model, creating a more comprehensive version titled MINS2.

Murata, et al. [76] show that the canonical neurons, in addition to encoding
self-action (as opposed to observed action, encoded by the mirror neurons), also
encode object representations in monkeys. It has been hypothesised that canon-
ical neurons may play a large part in understanding nouns while mirror neurons
are used in the representation of verbs [69].

We encode all language related information within the schema framework,
tying it directly to the sensorimotor experiences it represents and throughout the
developmental progression we attempt to weave the learning of communication
and general motor skills together. The schema framework also has the capacity
to recognise the actions of others and relate them to the robot’s own experiences

based around the shared understanding of the goal driving the action.

3.2 Association of sensations and actions

The schema memory associates actions with the sensations that appear to result
from that action and the sensations which trigger the action. In addition to this,
sensations may become associated with other sensations that have been seen at

the same time (associated observations). This has the effect that one set of

LAn exaptation being the exploitation of an evolutionary adaptation to serve a different

purpose than the one it initially developed for.
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sensory stimulation may remind the agent of a past action it performed and so
cause the agent to perform it again.

The direct associations between actions and sensations provide the mechanism
by which the schema memory is able to predict the outcomes of its actions and
form plans to achieve changes in the environment, while the associated observa-
tions can be used for the learning of language with verbs becoming associated
with actions, nouns becoming associated with groups of sensations and adjectives
becoming associated with individual sensations. Novel combinations of words can
lead to the agent not only performing a previously remembered action, but also
to performing new actions based on the combination of memories stimulated by

the different words.

3.2.1 Observations and world states

Rather than attempting to directly encode sensor information within a schema
we combine related information together into ‘observations’. Each observation
has a type and a number of properties, these properties being defined by the
type of observation. For example, a visual observation may include the spatial
position of an object, the object’s colour and an object identifier passed to the
system by a lower level vision processing unit, while an auditory observation may
simply have a single property containing whichever word the robot has recently
heard, with multiple auditory observations occurring in the case of a sentence
being heard.

These observations are collected together in a ‘world state‘. A world state
being little more than a set of observations describing the state of the environment

as experienced by the robot at a given point in time.

3.2.2 Observation probability tracking

In addition to tracking the probability of a schema’s success as a whole, the
schema memory tracks the probability of each individual observation within that
schema. This means that when a chain of schemas is sought after to complete
a given task only the relevant components are considered. For example, if the
robot has been given the task of moving a block but one of the potential schemas

that could be used to complete this task also has a chance of knocking a ball off
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the table in the process, the likelihood of the ball being displaced can be ignored
as it is not relevant to the completion of the task.

Tracking individual probabilities also allows the system to cope with sensor
noise to a greater degree. Instead of creating a new schema on the few occa-
sions when sensor noise has resulted in a different outcome to that expected, the
system can store this alternative outcome alongside the expected result with the
appropriate probability for each and predict the most likely of the two each time

the schema is evaluated.

3.2.3 Observation disappearance

In the case where an object or sensation disappears, or fails to reappear when
expected, the underlying sensory system is required to report this disappearance
explicitly to the schema memory. It is not enough that this sensation simply
no longer be reported as the schema memory only creates new schema represen-
tations based on new or altered observations, not on the absence of previously
experienced ones.

This has the advantage that the lower level short-term memory is then able to
‘forget’ remembered sensations if they are not experienced for a short while. For
example, if an object goes out of view during the early stages of development, prior
to any strong understanding of object permanence, it may simply be forgotten
about without creating unnecessary, and arguably incorrect, schemas implying
that a head or eye movement can cause an object to be removed from the world.
As the understanding of object permanence increases the object might still be
reported to the schema memory for gradually lengthening amounts of time since it
was last seen, but eventually it may still be forgotten by the short-term memory.
This further separates the action which may have initially caused the object to
leave the view from the eventual absence of knowledge about it caused by the

short-term memory forgetting it.

3.2.4 Associated observations

Previous schema systems have tracked the pre-conditions necessary for a schema
to be successful and the post-conditions which should occur after the schema

has been executed. In addition to this we introduce the concept of ‘associated
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observations’. These are observations that have been seen to occur frequently
alongside a schema but are neither required for the schema to be executed, nor
directly effected by the action taken. This provides the basis for the introduction
of language into the system, without the need for any explicit concept of language
being preprogrammed into the system. The process by which this takes place is
discussed alongside the language learning results in section 5.9.

There are two different mechanisms by which an observation may become
associated with a schema within our framework. First, it can become directly
associated with the schema itself, for example hearing a word like ‘grasp’ may
become associated with a schema that represents the action of grasping objects,
the context in which it is applicable and the result of having grasped an ob-
ject. Second, an observation can become associated with another observation,
which may appear in multiple schemas. For example, the word ‘red’” may become

associated with any visual observations containing red objects.

3.3 Schema chaining

The linking of pre-conditions and post-conditions from different schemas ( ‘schema
chaining’) creates a traversable network representing different world states and
the actions required to move between these states, as illustrated in figure 3.8.
Without schema chaining the robot’s interest in unreachable objects would de-
crease as it failed to reach them. Schema chaining allows for cases in which the
feedback of an action isn’t instantaneous to still be recognised as being useful.
Thus making the entire series of actions required to point at an object, wait
for another agent to move the object and then reach out to touch the object
interesting to the robot.

In our implementation schema chaining is achieved by applying Dijkstra’s
algorithm [29] to this network of world states. We treat each state as a vertex
in the network of potential world states and each action as an edge between
two states. These paths are then weighted based on the probability of success,
allowing the system to determine the shortest chain of actions required to achieve
a goal in the manner most likely to succeed.

The potential states that make up the vertices are determined by matching

the post-conditions of the last schema tested against the pre-condition of the next
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Pre-conditions Action Post-conditions

Object out of reach | Point to object | Object in reachable area

/

Pre-conditions Action Post-conditions

Object in reachable area | Reach to object | Object in reachable area

Touching object

Figure 3.8: A high level example of schema chaining, allowing the robot to gain
access to an object that would otherwise be outside of its reach through communi-

cation with another agent.

candidate. Any generalised schemas have their values populated based upon the
prior schema in a potential chain before being tested for compatibility.

During the execution of a chain the robot evaluates the success of the pre-
dictions made by each schema in the chain after the action component of that
schema has been executed. If the execution of one of the schemas results in an un-
expected outcome which is not compatible with the next schema’s pre-conditions
then the chaining process begins anew, finding a chain of schemas from the new
world state to the target.

Continual evaluation of the environment during the execution of a chain allows
the system to adapt to both incorrect or unreliable learning and to other agents
acting upon the environment. This is investigated further in chapter 5.8, in which

the robot makes use of this functionality to cope with interference from a third

party.

3.4 Schema excitation

To determine which schema should be executed next we make use of an intrinsic
motivation system, focusing on the novelty of experiences [102]. When presented
with a novel scenario this leads to executing schemas which are likely to be
relevant to the novel aspects of the scenario and so more likely to lead to the

formation of new schemas representing the effects of the novel components of the
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scenario. This gives the system the ability to form partial plans of action aimed
at expanding its own knowledge of the world.

For the purposes of illustration we consider a robot which has already learnt a
number of sensorimotor patterns relating to looking at its own hand and moving
its hand to the location it is looking at. If we now introduce a previously unseen
object the robot’s memory of seeing its own hand in the location the object now
occupies is partially activated based on the similarity of the two experiences. In
the absence of more exciting stimuli this is enough to cause the robot to perform
the action it remembers being associated with seeing its hand in that location,
namely moving its hand into that location. The final result being that upon being
presented with a new object the robot will reach out and touch the object and
so gain further novel experience.

By combining the novelty of the current experience with the similarity to past
experience a behaviour emerges that results in the robot selecting actions likely

to be relevant to the novel components of new experiences.

3.4.1 Implementation

A schema’s excitation level is found by first comparing each observation present
in the current world state with all the post-conditions combined with observa-
tions associated with the schema as a whole and observations associated with
components within that schema.

Each observation contains a set of different properties, the amount an ob-
servation remembered as part of a schema is excited by an observation currently
present in the environment is determined by how many of these properties are the
same. For example, a simple visual observation may have properties specifying in
which visual field an object is detected and the colour of that object. This allows
the observation of a blue block in field 7 to excite an observation of the robot’s
own end effector (a green touch sensitive ‘finger’ in the case of the Adept robot,
and a yellow hand in the case of the iCub) in that same field. As such, although
the robot has never encountered the block before, it is directed towards schemas
that are most likely to have some relation to it.

The excitation contribution of each observation is then weighted based on
the amount that observation has been encountered in the past, with more com-

mon observations being less interesting than novel ones. To do this the system
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tracks the number of times an observation is given attention. An observation is
considered to have been given attention when it is both being perceived by the
robot and is also referenced in the currently executing schema. In this way the
importance of a perception not directly related to the current action is not di-
minished unnecessarily. For example, if the robot is presented with two objects,
one which has been previously seen and one which is new, the new object will be
of more interest and so will be interacted with, however although the old object
is constantly being perceived during these interactions the number of encounters
with it is not increased. As such the level of excitement provided by that object
remains unchanged while it is not being interacted with.

When calculating the excitation from an observation associated with a com-
ponent of a schema, the ratio of the number of times a remembered associated
observation and the observation it was associated with are seen together and the
number of times the associated observation is seen in other contexts is used to
weight the excitation contribution from that observation. When considered in
the context of language learning this results in words that are heard coinciden-
tally in a large number of different contexts having a much lower weighting when
compared to words which are more tightly related to a specific element of the
scenario. The effects of this can be seen in chapter 5.10, an experiment in which
we introduce words such ‘grasp’ and ‘drop’, which relate directly to actions the
robot has taken, alongside words like ‘this’ and ‘is’, which can occur in a wide
variety of different contexts.

If a schema cannot be activated directly from the current state but instead
requires a chain of preceding actions we decrease the excitation of that schema
based on the distance between the current world state and that schema, this dis-
tance is defined as being the length of the chain of schemas required to achieve the
schema currently being evaluated. A schema which can be executed immediately
has a distance value of 1.

A schema is considered unreachable if no chain of previously learned schemas
can be formed to transition from the current world state to one in which that
schema can be executed. In this case the schema is given an excitation value of
0.

The excitation value of the schema as a whole is then diminished by the

number of times that schema has been activated, this allows schemas that are
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not producing new information (and so new schemas) to become less interesting
and make way for other schemas to be investigated in the current context. If the
schemas which appear relevant to the current world state are not producing any
new results the robot becomes ‘bored” with them, eventually resulting in random
execution of barely related schemas in the hope of eliciting some new response
from the world.

A simple optimisation when determining whether or not a schema is reachable
via a chain is to keep track of the current highest excitation value of previously
tested schemas. If the schema being evaluated can’t be executed directly and its
estimated excitation is less than half that of the highest previously tested schema
then it is not necessary to attempt to find a chain leading to this schema. This
is because it would never be selected as the most exciting schema even if the
path selected only had two steps, since the excitation is divided by the length
of path required to reach it. This optimisation is not implemented here, as for
experimental purposes it can be valuable to obtain the excitation values of all
schemas, not just those executed. Additionally while the implementation used in
the following experiments is single threaded, the process itself can be executed in
parallel, allowing for the excitation of each schema to be evaluated in a separate
thread, making more efficient use of multi-core processors.

The full procedure for calculating the excitation of a schema based upon the
current world state can be seen in algorithms 1 and 2.

The schema with the highest excitation value is then selected for execution.
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3.4 Schema excitation

Algorithm 1 Calculate the excitation of a schema in the context of the provided

world state.
function EXCITATION(schema, worldstate)

excitation = 0

if schema’s pre-conditions are a subset of worldstate then
distance = 1

else

if schema is unreachable then

return 0
end if
distance = length of path to schema
end if

for each observationl in worldstate do
for each observation2 in schema’s post-conditions do
excitation += similarity(observationl, observation2) / number of
times observationl has occurred
for each associatedObservation associated with observation2 do
excitation += similarity(observationl, associatedObservation)
* number of times associatedObservation and observation2 have occurred to-
gether / number of times observationl has occurred
end for
end for
for each associatedObservation in schema’s associations do
excitation += similarity(observationl, associatedObservation) *
number of times associatedObservation seen alongside schema / number of
times observationl has occurred
end for
end for
excitation = excitation / (number of times this schema has been executed
* distance)
return excitation

end function
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Algorithm 2 Calculate the excitation contributed by the similarity between two

observations.
function SIMILARITY (observationl, observation?2)

if observationl and observation2 are of the same type then
stmalarity = 0.25
else
return 0
end if
for each propertyl in observationl do
if observation2 has property with the same name and value as propertyl
then
similarity += 1 / total number of properties in observationl
end if
end for
return similarity

end function

3.5 Schema creation

Prior to schema creation an existing schema must have been executed. This
schema is selected based on the excitation criteria outlined above and so is likely
to be the most relevant action in that context, as it will be the schema with
the highest number of uncommon observations that can still be satisfied by the
current world state.

To decide if a new schema should be created we first take the relative com-
plement of the current world state (after schema execution) with respect to the
world state prior to execution plus the predicted post-conditions. If the result
of this is anything other than the empty set then an unexpected outcome has
occurred.

If it is found that a new outcome has occurred in conjunction with a new
observation being encountered prior to the execution of the schema then a new
schema is created to represent this knowledge. If the observations present prior to
the execution of the schema are the same as the schema’s pre-conditions then the
new outcome is added to that existing schema and the probability of it occurring

is tracked. An illustration of this process can be seen in figure 3.9.
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3.5 Schema creation

Given the world state:

World state
Object in field 4

The following schema is selected, due to the visual observation of an object in

field 4 triggering excitation of any schemas related to observations referencing

field 4:
Pre-conditions Action Post-conditions
Move to joint Finger in field 4
positions 0.43, 0.84

This schema is then executed and the process for determining if a new schema is

required is performed:

World state post-execution
Object in field 4
Finger in field 4
Touching

\

World state pre-execution U Predicted post-conditions
Object in field 4
Finger in field 4

$

Relative complement

Touching

As this is not the empty set a new schema will be formed:

Pre-conditions Action Post-conditions
Move to joint Object in field 4

Object in field 4 | positions 0.43, 0.84 | Finger in field 4
Touching

Figure 3.9: An example of the process leading to a new schema being created.
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3.6 Schema generalisation

Schema generalisation allows the system to go beyond simply being able to predict
and form action plans based around previously experienced outcomes, giving it
the ability to make informed decisions about scenarios it hasn’t encountered yet
but which are similar to past experiences.

This generalisation mechanism produces schemas containing parameters (or
‘slots”) which can be populated based upon the current experiences of the robot
when being executed. Beyond simply determining which aspects of the schema
may be interchangeable with other values as many existing schema systems do,
this mechanism attempts to find generalisable relationships between the pre-
conditions, the action and the post-conditions of a schema. This allows the
generalised schemas which are produced as a result of this process, to represent
the agent’s hypotheses about how an interaction may work at a more abstract
level.

Generalisation is attempted whenever a new schema is created. The general-
isation process first selects the subset of schemas which appear to be similar to
the new schema based upon them all having the same number of the same type of
observations for their pre-conditions and post-conditions. At this time associated
observations are ignored for the process of generalisation, but observations can
be associated with existing generalised schemas.

To make it possible to generalise the action component of the schema we must
first be able to describe it in terms of observations. We achieve this by finding
the result of that action in the simplest known context. The simplest context is
discovered by finding a schema which makes use of that action and has the least
number of pre-conditions, all of which must be satisfied by the pre-conditions in
the schema currently being generalised over. The resulting post-conditions of the
found schema must be a subset of the post-conditions of the schema upon which
generalisation is taking place. The post-conditions of the found schema are then
used to convert the action of the schema being generalised into a ‘target action’
which consists of a list of observations that should be achieved by any schema
implementing that action. An example of this process can be seen in figure 3.10.

If the action has no parameters then this stage is unnecessary. Although this is
not strictly necessary when the action’s parameters are of a compatible type with

the observations within a schema it can still be beneficial to make use of a target
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action, as this allows the generalised schema to make use of any adjustments
made by the simpler schemas which fulfil its target. For an example of this see
chapter 5.2.1.

Given the following schema as a potential target for generalisation:.

Pre-conditions Action Post-conditions
Move to joint Object in field 4

Object in field 4 | positions 0.43, 0.84 | Finger in field 4
Touching

We select the following schema based on it sharing the same action component
and having the least number of pre-conditions. In this example the selected

schema has no pre-conditions indicating that it is applicable in any context.

Pre-conditions Action Post-conditions

Move to joint Finger in field 4
positions 0.43, 0.84

/

Pre-conditions Action Post-conditions
Target: Object in field 4

Object in field 4 | Finger in field 4 | Finger in field 4
Touching

The post-condition of that schema is then used as a target condition to be
achieved in place of the original concrete action. Upon execution of this action

the schema most likely to achieve the target will be found and executed.

Figure 3.10: An illustration of the process for forming a target action.

Once the schema is in a form entirely represented by observations a simple
lifting process takes place, replacing any identical values that occur in the pre-
conditions and in either the target action, the post-conditions or both with a
randomly generated variable (represented within our system as $z where z is any
alphabetic character). An example of the conversion from a concrete schema to
a generalised schema can be seen in figure 3.11.

This generalised schema is then tested against all of the similar schemas that

were found in the first stage of the process. If enough of these are correctly
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represented by the generalised schema it is added to the schema memory. We
determine whether a generalised schema is reliable enough based upon two simple
dynamic thresholds which take into account the reliability of prior generalisations.
If earlier generalisations are proving to be unreliable then new ones must be
tested against a greater number of similar schemas and achieve a higher rate of
success. We do this by considering the relationship between the number of times
that any generalised schemas have been executed (1) and the number of times
these generalised schemas have successfully predicted the outcome of the action
undertaken (€2). The formulas for these thresholds are expressed in equations 3.1
and 3.2.

1+7 if Qi
evidenceT hreshold = i v hAe O (3.1)
1+ & otherwise
: if T i
satis factionT hreshold = 0 Q B O (3.2)
— 5y oOtherwise

The full details for generalisation of schemas can be viewed in algorithms
3, 4,5, 6 and 7. The values evidenceThreshold and satisfactionThreshold are
populated based upon the formulas described in 3.1 and 3.2 respectively.

When a generalised schema is executed the values from the current world state
are used to populate the variables within the generalised schema, allowing it to
be treated as a normal schema by all other aspects of the system.

When resolving a target action we can make use of the schema chaining mech-
anism previously defined in section 3.3, since this takes as its input the current
world state and a target world state and outputs either a single schema or a chain
of schemas which will achieve this target state. This results in the schemas devel-
oping a hierarchy in which more basic schemas can be utilised as components in
generalised schemas. This differs from the form of hierarchy seen in many other
schema based works, which focus on the creation of a hierarchy of schemas by
encapsulating schema chains within new individual schemas. While this is also
theoretically possible within our own framework that aspect of schema hierarchy

is not investigated here.
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Pre-conditions Action Post-conditions
Target: Object in field 4

Object in field 4 | Finger in field 4 | Finger in field 4
Touching

l

Pre-conditions Action Post-conditions
Target: Object in field $x

Object in field $x | Finger in field $x | Finger in field $x
Touching

Figure 3.11: A schema with its concrete action replaced by a target action can

then be converted into a generalised schema.

When executing a target action it is important that the parent schema of that
action is removed from the pool of potential schemas that may be used to resolve
the target. Otherwise a scenario can emerge in which a target action resolves
itself using its own parent schema, resulting in an infinite loop as illustrated in
figure 3.12
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Pre-conditions Action Post-conditions
Target: Object in field $x

Object in field $x | Finger in field $z | Finger in field $x
Touching

|

Pre-conditions Action Post-conditions
Target: Object in field $x

Object in field $x | Finger in field $x | Finger in field $x
Touching

i

Pre-conditions Action Post-conditions
Target: Object in field $x

Object in field $x | Finger in field $z | Finger in field $x
Touching

|

Ad infinitum

Figure 3.12: When attempting to resolve a target action it is possible that the
parent schema of that action may be selected as the solution most likely to succeed,
as that schema will always contain the desired target state. For this reason it is
advisable to remove the parent schema from the pool of potential schemas prior to

resolving a target action.
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Algorithm 3 Schema generalisation through parameterisation.

function GENERALISE(newSchema, existingSchemas)
// Find similar schemas and possible target action
minSize = number of pre-conditions in newSchema
targetUsed = true
action = a new target action
for each schema in existingSchemas do
if schema already generalised then
continue
end if
if similar(newSchema, schema) then
Add schema to list of similarSchemas
end if
if newSchema’s action has no parameters then
action = a copy of newSchema’s action
targetUsed = false
else if newSchema’s action is the same as schema’s action then
// Find the result of this action in the simplest context
if number of pre-conditions in schema less than minSize and
schema has post-conditions and satisfies(schema, newSchema) then
minSize = number of pre-conditions in schema
action’s target = schema’s post-conditions
end if
end if
end for
if number of schemas in similarSchemas less than evidenceT hreshold
then
// Not enough evidence to generalise this schema yet
return
end if
if targetUsed and action’s target is null then
// Unable to find suitable target action
return
end if
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Algorithm 3 Schema generalisation through parameterisation (continued).

for each schema in similarSchemas do
// Find different generalisations possible from each similar schema
variables = findVariables(schema)
if variables is empty then
return
end if
trialSchema = copy of newSchema
trialSchema’s action = copy of action
usedVariables = generaliseState(reference to trialSchema’s pre-
conditions, variables)
if targetUsed then
usedVariables = wusedVariables + generaliseState(reference to
trialSchema’s target action, variables)
end if
generaliseState(reference to trialSchema’s post-conditions,
usedV ariables)
if generalisation matching trialSchema already exists then
continue
end if
satisfied = 0
for each testSchema in similarSchemas do
if satisfies(testSchema, trialSchema) then
Increment satis fied
end if
end for
if (satisfied / number of schemas in similarSchemas) less than
satis factionThreshold then
continue
end if
Add trialSchema to the schema memory.
end for

end function
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3.6 Schema generalisation

Algorithm 4 Determine whether two schemas are similar for the purposes of
generalisation.
function SIMILAR(schemal, schema2)

if number of pre-conditions and post-conditions in schemal differ from
those in schema2 then
return false
else if schemal’s action type is different to schema2’s action type then
return false
else
for each observationl in schemal’s pre-conditions do
if observationl not contained in schema?2’s pre-conditions then
return false
end if
end for
return true
end if

end function

Algorithm 5 Generalise a world state using a provided set of candidate variables.
function GENERALISESTATE(reference to state, variables)

usedV ariables = empty hash map with variable names as keys
for each observation in state do
for each property in observation do
for each var in variables do
if var’s value equals property’s value then
Set property’s value to var’s key
Add var to usedV ariables
end if
end for
end for
end for
return usedV ariables

end function
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Algorithm 6 Find potential variables for parameterisation of schemas when
generalising.
function FINDVARIABLES(schema)

variables = empty hash map with variable names as keys
for each observationl in the union of schema’s pre-conditions and schema’s
target action do
for each observation2 in schema’s post-conditions do
for each propertyl in observationl do
if propertyl doesn’t exist in another schema’s pre-conditions
within similarSchemas then
continue
end if
if observation2 doesn’t have a property with the same name as
propertyl then
continue
end if
property2 = property from observation2 with the same name as
propertyl
if value of propertyl equals value of property2 then
if value of propertyl doesn’t already exists in one of variables’
values then
varname = Previously unused variable name
Add variable to variables using varname as the key and
propertyl’s value as the value
end if
end if
end for
end for
end for
return variables

end function

74



3.6 Schema generalisation

Algorithm 7 Determine if schemal is able to achieve the same result as schema?2
given similar starting conditions
function SATISFIES(schemal, schema?)

if schemal is generalised then
Instantiate schemal’s variables based on the values in schema?2’s pre-
conditions
end if
if schema?2’s pre-conditions are a subset of schemal’s pre-conditions then
if schema?2’s post-conditions are a subset of schemal’s post-conditions
then
return true
end if
end if
return false

end function
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3.7 Generalisation of associated observations

When associating observations with other observations (as opposed to associating
observations with entire schemas), a similar approach to that taken for schema
generalisation can be used, allowing these associations to ignore properties within
an observation which are unrelated to the current association.

Figure 3.13 shows an example in which two visual observations have both
become associated with the robot hearing the word ‘red’. Given a number of sim-
ilar associations in which some properties remain constant while others change,
the generaliser assigns variables to the other changing properties which can then
be instantiated based on current observations when wishing to determine if this
generalised association applies to any elements of the current world state. The
remaining concrete property values are then assumed to be the elements of this
observation which actually relate to the associated observation. In this example
the result is that the colour and object ID properties become associated with
the word ‘red’. In this case the object ID is becoming associated because ob-
jects are identified based on their colour by the vision system, so in all examples
encountered the robot will find that object ID 1 occurs alongside the colour red.

The implementation of this mechanism can be seen in algorithm 8.
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Visual observation

Colour: Red
0 ,OW ¢ Auditory observation
Object ID: 1

Word: RED

A
Y

X:78.32
Y:12.43

Visual observation

Colour: Red
0 .OW ¢ Auditory observation
Object ID: 1 -

Word: RED
X:52.93
Y:14.72

Visual observation

Colour: Red
0 ,OW ¢ Auditory observation
Object ID: 1

Word: RED
X: $a
Y: $b

A
Y

Figure 3.13: The creation of a generalised association based on two concrete
associations.
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Algorithm 8 Generalise the properties of an association between two observa-

tions.
function GENERALISEASSOCIATION (newAssociation, existing Associations)

for each association in existingAssociations do
if association’s first observation is of the same type as new Association’s
first observation and association’s second observation is equal to
newAssociation’s second observation then
for each prop in association’s first observation do
if newAssocation’s first observation has a different value for
property with same name as prop then
if prop not already in dif ferent Properties then
Append prop to dif ferent Properties
end if
end if
end for
Append association to similar Associations
end if
end for
if similar Associations has less than 2 associations then
return
end if
generalisedObservation = copy of newAssociation’s first observation
if dif ferentProperties is empty or dif ferentProperties contains the
same number of properties as generalisedObservation then
return
end if
for each property in dif ferentProperties do
Replace property corresponding to prop in generalisedObservation with
unused variable
end for
generalised Association = new association between
generalisedObservation and newAssociation’s second observation
if generalisedAssociation doesn’t already exist then
Add generalised Association to schema memory
end if

end function
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3.8 Schema based observation

3.8 Schema based observation

The schema system is capable of being used as a filter through which the actions
of others can be interpreted and given meaning. We achieve this by considering
the state of the world prior to another agent acting and then again after they
have completed an action. We then look for a schema with similar pre-conditions
and post-conditions, from this we can infer what action we would have taken to
achieve the same result.

This knowledge could then potentially be used for training another component
of the system to recognise visual properties of the other agent’s action and clas-
sify them according to our own representation of that action. This would allow
us to then recognise that action outside of contexts that we’re already familiar
with. Such training of visual recognition sub-systems is outside the scope of this
investigation but is discussed in more detail in chapter 6.2.5 (Further work).

We can take this a step beyond simply learning the correspondence between
others’ actions and our own to allow us to predict their future actions and eventual
goal. We achieve this by keeping a record of schema chains that we have previously
found to be useful and then searching for the chains in which the action we
have just observed occurs. From this we can form one or more hypotheses as
to the other agent’s next action, with each action further narrowing the list of
potential schemas until we arrive at a single prediction as to their desired goal.
This provides the capacity for the schema learning framework to perform plan
recognition based upon its own experiences of the world.

An example of this predictive capability is seen in experiment 5.14.
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Chapter 4

Robotic Platforms

Experimentation was carried out across two robotic platforms. An Adept six axis
manipulator arm was used for experiments based around touching and pointing,
while an iCub humanoid robot was used for similar touching and pointing experi-
ments along with additional object interaction experiments. Experiments on both

platforms involved aspects of learned communication and intrinsic motivation.

4.1 Adept manipulator arm

The hardware that the system is being tested on consists of an Adept manipulator
arm mounted on a rigid vertical back-plane. The arm is configured to operate on
a two-dimensional manifold above a table upon which objects can be placed for it
to interact with, the manifold curves up at the extremities tracing the outer limit
of the robot’s work envelope and so allowing the robot to point towards distant
objects. The arm has a single ‘finger’ as an end effector, which has four touch
sensors attached giving directional touch input. This end effector can be used for
interacting with objects by touching them and for communicating by pointing at
an object.

The vision system consists of an AVT Stingray F-046C firewire camera, which
provides a resolution of 780x580 at up to 61 frames per second. This is mounted on
a pan tilt platform above the arm looking down on the work space. The system’s
visual space is divided into a number of small circular visual fields, making the
identification of object positions within the world more discrete. Objects are

detected through simple blob detection and are identified based on their colour.
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This hardware setup can be seen in figure 4.1.

4.1.1 Simulated robot

Due to the large running times of some of the experimental scenarios these have
been tested in a simulation environment that has been constructed to roughly
model the physical hardware. It is important to note that the scenarios requiring
simulation are designed to illustrate the benefits of specific components within
the system by their removal. In the scenarios in which the complete system is
active a truly embodied approach with the previously described physical robot is
employed.

In addition to the arm, the simulation environment contains a pan/tilt vision
system, a touch sensitive end effector and a workspace on which objects can be
placed. The simulator provides rigid body physics, allowing for semi-realistic
interactions between the arm and its environment. This simulation environment
can be seen in figure 4.2. The control software is capable of driving either the
simulated arm or the real arm without modification. The simulator in use is

Gazebo, a part of the Player project.

4.1.2 Pointing mechanism

The controller takes the system through two learning stages to create a mapping
between the motor system and the vision system. This mapping allows the robot
to move its end effector into a desired visual field, which can then be used for
allowing it to interact with objects (both by physically touching them and by
pointing at them for communication).

The first stage of this process is akin to Piaget’s first stage infant, the robot
goes through a period of ‘motor babbling’, where it exercises all possible joint
configurations and creates schemas representing these actions. It receives no
feedback from these actions, merely generating a base set of schemas that abstract
higher level schemas away from explicit joint commands, allowing them to instead
refer to existing schemas as their action components.

In the second stage the vision system is made available to the robot and it
begins to associate visual context with the existing motor schemas. This is similar

to hand fixation in an infant. This stage is visualised in figure 4.3. The robot
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Figure 4.1: The Adept arm system and camera.
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Figure 4.2: The simulation environment showing the arm pointing at an object
placed slightly outside of the robot’s work envelope.

executes the purely motor based schemas it has learnt in the previous stage and
forms a new visual field whenever it sees its end effector outside of any existing
fields, it then adds this as a new post-condition to the executed schema. The end
effector is detected via the vision system, potentially it will add any changes in
visible objects as post-conditions, however at this stage of the robot’s learning no
other objects are presented to it.

The system operates primarily on the X-Y plane using 2 degrees of freedom,
illustrated in figure 4.4(a). To enable the robot to point at objects outside of
its work envelope it is able to slightly lift its end effector when at the furthest
extent of its normal range of motion, shown in figure 4.4(b). Both of these planes
are accessible to the robot throughout all stages of learning, so it first learns
to position its end effector in the ‘pointing’ plane prior to any objects being
introduced for it to point at as part of its random motor babbling and vision
mapping stages.

It is important to note that this is not giving the robot a full 3D represen-
tation of the space it occupies as the robot still effectively lacks accurate depth

perception, the iCub system discussed later does contain the ability to judge
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Figure 4.3: A visualisation of the visual fields, part-way through their discovery.

the distance of objects and the differences in representation that this causes are
investigated in chapter 5.3.

A similar system has since been investigated by Hafner and Schillaci [49].
In their experiments they extended this mechanism of learning proto-imperative

pointing through failed grasping to work with a 3D reach space.

4.1.3 Morphological implications

This approach raises certain morphological implications. For a pointing gesture
that a human would recognise to emerge from this technique the robot in question
must itself have a roughly humanoid anatomy. Specifically it requires the robot’s
vision system to be positioned above the arm system looking out in the direction
of action. Additionally for the pointing to appear accurate the vertical distance
between the vision system and the arm should not be too great.

All current testing has been performed with humans with prior knowledge
that what they are about to view is intended as a pointing gesture, it might
be interesting to investigate the effects this gesture has on people who do not
already know what to look for. The anthropomorphic characteristics of the robot
in question might play as large a part in this as the quality of the gesture itself.

However this is outside the scope of the current investigation.
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Figure 4.4: (a) Direct contact with objects is only possible in the X-Y plane. (b)
The robot’s motion is extended into the Z’ plane allowing it to point at distant
objects. This is a simplified example, rather than having two distinct vertical
and horizontal planes the system operates on a manifold that curves up at the

extremities tracing the outside of the robot’s work envelope.
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4.1.4 System architecture

The Adept system is based around the Player robotics framework. The Player
server communicates with either the physical robot or the simulated one, vision
from either system is passed through a blob detector before being sent to the
developmental controller along with information on touch responses. Audio input
occurs outside of Player, being handled directly by the developmental controller.
CMU Sphinx is used for speech recognition with a limited dictionary of predefined
words.

The developmental controller then makes use of the PSchema library! which
implements the schema learning functionality detailed in the previous chapter.
In this manner PSchema itself is independent of a specific robotics framework or
platform, nor is it necessarily tied to robotics at all.

Unlike the iCub architecture, detailed in the following section, the develop-
mental controller operates directly in terms of joint configurations, with no inter-
mediary sensorimotor maps being created. Instead all mapping takes place within
the schema memory, during the initial learning phase the robot goes through a
period of motor babbling in which the arm is placed in a number of different lo-
cations, schemas are then created mapping the action in joint space to the visual
result, this initial learning is discussed further in section 5.1. An example of a

schema produced as a result of this process can be seen in figure 4.5.

Pre-conditions Action Post-conditions
Joint configuration -1.57, 2.61 | Finger in field 7

Figure 4.5: A schema produced during the early stages of learning on the Adept

robot, mapping a specific joint configuration to its visual result.

Figure 4.6 illustrates the components of this architecture and their connections

with each other.

LA general purpose schema learning library, developed as part of this investigation and made
publicly available at http://pschema.org under the GNU General Public License (GPL).
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PSchema
learning framework
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Figure 4.6: A high level overview of the Adept system architecture.
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4.2 iCub humanoid robot

Figure 4.7: The iCub humanoid robot.

The iCub, shown in figure 4.7, has been developed as a common robotics
research platform as part of the RobotCub project [72, 98]. In total it provides
53 degrees of freedom, however in our experiments we do not make use of this full
range. The components made use of here are the head, one arm and one hand.
Together these provide 22 degrees of freedom, 6 of which are distributed between
the neck and eyes in the head, 7 control the arm and a further 9 control the hand.

The hand has a triangular array of 108 touch sensors, while the upper arm
provides 6-axial force/torque feedback. Due to feedback issues resulting in poor
reliability and safety issues the touch sensors are only used for evaluating grasps

and are not used to determine if the robot has come into contact with an object
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when reaching towards it. Instead the robot is required to always reach slightly
above an object to account for the iCub’s wrist tendon being likely to become
damaged if the hand is flexed upwards as would happen when reaching down on
to an object. The sensation of touching an object in the following experiments is
simulated within the sensorimotor controller whenever the hand is perceived to
be in the same visual location as an object. This also necessitates that a small
amount of assistance is provided to the robot when grasping objects, as they must
be lifted slightly for the hand to be able to reach them.

Two cameras mounted in the head provide a stereo vision system, each with
a resolution of 640x480 pixels at 15 frames per second. This stereo vision is then
used to provide rough depth estimates.

The iCub is capable of displaying expressions through a number of LEDs
underneath the face plate. These can be illuminated in various configurations to
achieve displays such as surprise, happiness, confusion, sadness, or anger. This
functionality is used to provide a rough indication of the robot’s internal state by
showing a look of concentration whilst performing an action followed by a happy

or sad expression if the action was successful or not.

4.2.1 Simulated robot

The iCub simulator, shown in figure 4.8, provides a 3D environment with simu-
lated physics. All the functionality of the real robot is simulated, allowing for a
full range of movement, stereo vision, touch sensing and facial expressions.

While the simulator allows the robot to interact with objects there are some
limitations. The simulation of the fingers is not fine enough to be able to ac-
curately grasp objects like we do with the real robot, instead a virtual grasping
function is employed in the simulator which attaches nearby objects to the robot’s
hand.

As with the Adept system the same software is capable of driving either the

physical robot or the simulated robot with only minor configuration changes.

4.2.2 System architecture

While the Adept system made use of the Player middleware system the iCub uses
YARP. As with Player this provides the capacity for the same control software to
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4.2 iCub humanoid robot

Figure 4.8: A 3D simulation of the iCub.

work with either the physical robot or a simulated environment without additional
modification.

Rather than controlling the motor joints directly the developmental controller
communicates with the sensorimotor controller (SMC) developed as part of the
IM-CLeVeR project. The many additional degrees of freedom provided by the
iCub make the use of direct joint configurations within the schema learning sys-
tem impractical. Instead the schema system handles higher level control, while
the SMC deals with the low level details involved in arm, head, eye and torso

movements. This is illustrated in figure 4.9.
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Figure 4.9: A high level overview of the iCub system architecture.
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The SMC performs a similar mapping stage to the schema system on the
Adept platform. However instead of just mapping the arm movements to visual
results it creates an overall gaze space that co-ordinates both eye, head and torso
movements and then creates a mapping between this and the arm system [52, 62].
A visual field will remain consistent within the gaze space even when the head or
eye move to focus on a new object. The developmental controller then communi-
cates with the SMC in terms of the combined gaze/reach space fields. Object and
hand detection is performed by a colour based blob detection component within
the SMC.

Figures 4.10 and 4.11 show the learnt mapping between the retinal space and
the eye motor space. Circles of the same colour indicate a link between a given

retinal position and the motor adjustment required to foveate upon it.
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Figure 4.10: Visual fields allow- Figure 4.11: FEye motor fields
ing for the discrete representation representing the required motor
of visual stimuli locations on the adjustment to foveate upon a given
retina. field.

Initially only eye movement is possible within the motor system, however
once these maps have reached a suitable level of coverage this constraint is lifted,
allowing for the addition of head movements. Figures 4.12 and 4.13 illustrate
the additional mappings which are learnt to account for the contribution of head
movements towards foveation. This allows the robot to make large crude move-
ments of the head which bring an object in to range so that the finer movements

of the eyes can foveate upon it. Further learning of the eye mapping continues
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during this stage if a visual stimulus is detected in a region not yet covered by

the maps.
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Figure 4.12: Visual fields rep- Figure 4.13: Head motor fields
resenting regions in which visual representing the neck movements
stimuli have been detected, map- required to bring a visual field in
ping to neck motor movements. to range of the eye motors.

Finally a further constraint restricting the robot’s ability to make use of its
arm is lifted, allowing the robot to make movements with its arm and hand. As
these movements are made a further set of maps are learnt between the visually
detected hand location and the arm movements which placed it there, shown in
figures 4.14 and 4.15. If a mapping does not exist between the visual location
in which the robot’s hand is detected and the head/eye motor system, linear
piecewise interpolation based around the nearest known neighbours is used to
approximate the motor movements necessary to foveate upon the hand. If this
approximation does not correctly predict the movements needed then the actual
result of this movement is recorded in a new mapping and a second attempt at
interpolation is made using this additional information.

Through this combined set of maps it then becomes possible for the robot to

fixate upon a visual stimulus and reach towards it.
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Figure 4.14: Visual fields in which the robot’s own hand has been detected.
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Figure 4.15: Arm motor fields representing the joint movements required to place

the robot’s hand in a corresponding visual field.
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4.2.3 Pointing mechanism

As with the Adept, the iCub is capable of incidentally generating gestures which
give the appearance of pointing when attempting to reach towards distant objects.
The visual representation provided by the SMC is given in terms of the gaze
direction of objects alongside an additional depth component calculated via the
stereo vision system. By reaching as close as possible to an object along a given
gaze direction a proto-imperative pointing gesture is produced.

The stereo vision system is used to produce a rough depth estimate and from
this determine whether an object is within reachable range of the robot. This
is exposed to the schema memory in terms of a binary reachability property,
allowing the system to distinguish between objects that are within the robot’s

peri-personal space and objects that are within the robot’s extra-personal space.

4.3 Time perception and the perception of other

agents

While time segmentation has not been a focus of this work, it has been necessary
to employ a simple mechanism for determining when one unit of time ends and
another begins. Due to the action oriented nature of our framework we decided
upon an egocentric action based interpretation of time, whereby each time step
begins immediately prior to an action being performed and ends once all self-
motion has stopped. This has advantages in terms of simplifying the problem
of determining causal relationships between egocentric actions and their results,
while this is beneficial for the majority of actions undertaken as part of the
following experiments it introduces potential issues when other agents may be
interacting with the environment independently of the robot’s own actions.

The majority of actions taken by other agents within our experiments are
as a result of social interaction with the robot and so can be accounted for by
the robot’s casual understanding of the world. In more complex scenarios in
which other agents can also act independently of the robot a more sophisticated
mechanism would be needed for segmenting their actions and then attributing
the results of their actions to that agent instead of misinterpreting them as a

result of the robot’s actions.
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While it is necessary to minimise the additional complexity of other agents
acting upon the world during the robot’s learning, once the schema memory has
developed all the desired concepts it can operate in more complex and unpre-
dictable environments. By making use of the continual evaluation of schema
chains the robot can even adapt to other agents interfering with aspects of the
environment relevant to the goal that it is currently working towards. This func-

tionality is explored further in chapter 5.8.
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Chapter 5

Experiments & Interpretation of
Results

These experiments were carried out across the two physical robotic platforms and
their two simulation environments, described in chapter 4. Different combinations
of these platforms are used for different experiments depending on the capabilities
required, however in a number of experiments we have attempted to duplicate
them across both the Adept and iCub physical platforms to demonstrate that the
learning mechanism can be usefully employed on very different hardware, with
different overall system architectures.

The two platforms have a slightly different visual representation, on the Adept
system visual information is given in terms of randomly numbered visual field IDs,
whereas on the iCub this is represented as a pair of co-ordinates indicating the
gaze direction which is calculated based on a combination of the head and eye
configurations. The motor systems on each platform differ more significantly, on
the Adept platform motor actions are given in terms of target joint positions,
on the iCub platform reaching is done in terms of gaze co-ordinates which is
made possible by the combined gaze-reach map learnt by the lower levels of that
architecture. A more comprehensive description of the differences between the
two physical platforms and their software architectures can be found in chapter
4.

On both platforms the visual location of the robot’s own hand is automati-
cally disregarded as a potential pre-condition. While this may be a reasonable

assumption to make with regards to the hand a more comprehensive approach
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which would encompass future similar scenarios by making use of an extension

to the generalisation algorithm is discussed in chapter 6.2.1.

5.1 Initial learning

Prior to each of the following experiments the two platforms go through a period
in which they exercise their most basic movements, enabling them to populate
their schema memories with these actions and their results when performed with-
out the presence of other objects or agents.

The same procedure is used in the corresponding simulation environments as

on the physical robots prior to any experiments in which simulators were used.

5.1.1 Adept

The Adept arm moves through its range of potential joint configurations, moving
each joint in 10 degree increments until it has fully explored its reach-space. After
each movement it learns the visual effect of seeing the tip of its finger in each
location. Due to the simplicity of this hardware platform no other action types

are possible.

5.1.2 iCub

The iCub exercises all of the reaches supplied to it by the lower level sensorimotor
controller (SMC), learning the resulting visual experience of seeing its hand in
various different locations. In addition to these reaching schemas it also practices
a pressing action, which has no effect, a grasping action which results in the robot
receiving the sensation of touching its own hand due to no objects being present

and a releasing action.

5.2 Experiment 1: Learning to touch

This experiment was carried out on both the Adept and iCub platforms. Each
robot starts from having only performed the initial learning stage, having never

previously encountered objects other than itself.
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5.2 Experiment 1: Learning to touch

We begin by introducing a new object for the robot to interact with, the
excitation of this new stimulus should cause the robot to be reminded of schemas
related to the position the object occupies, resulting in it reaching toward the
object and learning about touching objects. Once this has occurred we place
new objects in different positions, giving the system the opportunity to form a

generalised schema representing touching any objects in any positions.

5.2.1 Results

When the robot first sees an object it checks for schemas excited by that stimulus
and finds that the most excited schema is one in which it remembers seeing its
own hand in the location the object now occupies. This remembered schema is

shown in figure 5.1.

Adeot Pre-conditions Action Post-conditions
ept:
p Joint configuration -1.57, 2.61 | Finger in field 7
. Pre-conditions Action Post-conditions
iCub:

Reach to 35, -66 Hand at 35, -66

Figure 5.1: The robot is reminded of a prior action involving the location the

object now occupies.

Upon executing this the robot finds that when an object is present in the
location it reaches its hand towards, it receives an unexpected touch sensation.
A new schema, figure 5.2, is then formed to represent this knowledge.

With enough examples of this behaviour this can then be generalised into a
form which represents reaching out and touching objects in any position, resulting
in the generalised schema shown in figure 5.3. Despite the iCub’s reach action
being in terms of gaze co-ordinates, a target action is still generated as this
allows the system to account for potential inaccuracies in the hand-eye mapping.
For example, over time the calibration of the iCub can shift resulting in the
mappings between the gaze space and the reach space becoming slightly out of
alignment, given enough examples the schema system can adapt each of its low
level reaching schemas to account for this. This adjustment occurs automatically

as a result of the probability tracking performed on the post-conditions of actions,

101



5. EXPERIMENTS & INTERPRETATION OF RESULTS

Pre-conditions Action Post-conditions
Joint configuration | Object 1 in field 7
Adept: ) ] ) ]

Object 1 in field 7 -1.57, 2.61 Finger in field 7
Touching

Pre-conditions Action Post-conditions

X 1 _
:Cub: Object 1 at 35, -66

Object 1 at 35, -66 | Reach to 35, -66 Hand at 35, -66
Touching object 1

Figure 5.2: A new schema is created to represent the otherwise unpredictable

knowledge the robot gained from this interaction.

as a new visual result of a reach action becomes more prevalent than the original
the schema begins to predict that outcome in place of the original. This allows
the system to gradually adapt to shifts of calibration on-line without requiring
relearning of the original mappings, and by keeping the generalised schemas in
terms of target actions these adjustments can be made use of by the higher level

generalised schemas automatically.

Pre-conditions Action Post-conditions
Target: Object $a in field $x
Adept: ) . ) . . .
Object $a in field $x | Finger in field $x Finger in field $x
Touching
Pre-conditions Action Post-conditions
:Cub: Target: Object $a at $x,3y
Object $a at $x,$y | Hand at $x,3y Hand at $x,$y
Touching object $a

Figure 5.3: The creation of a generalised schema representing the act of touching

objects in any location.

5.3 Experiment 2: Learning to point

This experiment was carried out on both the Adept and iCub platforms, due to

differences in their capabilities we arrived at two slightly different representations,
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as shown in the results section. For this experiment the iCub was provided with
an extension to its visual perception allowing it to crudely estimate whether an

object was reachable or not based upon its stereo vision system.

The robots began this experiment having already learnt how to touch objects
from experiment 1, with the iCub this capacity was relearned to allow for the

incorporation of the additional depth information provided in this experiment.

Figure 5.4: The iCub in its starting position with a green object placed in the

robot’s unreachable extra-personal space.

We first place an object outside of the robot’s reachable work area (in its
extra-personal space). When the robot attempts to reach towards the object it
incidentally performs an action that looks to an outside observer like a pointing
motion. When this occurs we move the object closer to the robot, as a parent
might fetch a distant object that their child is reaching towards. Figure 5.4 shows

the iCub with one example of an object placed outside of its reachable range.
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5.3.1 Adept results

When presented with the object the Adept robot has no way of determining that
it is out of reach and so the general touching schema (figure 5.5) is excited. This
indicates that the robot believes that upon reaching out towards the object it
should be able to actually touch the object.

Pre-conditions Action Post-conditions
Target: Object $a in field $x

Object $a in field $x | Finger in field $x Finger in field $x
Touching

Figure 5.5: The Adept’s generalised touching schema is excited by the distant

object’s presence.

However, upon completion of the action the robot finds that the object has
been moved to a new reachable location and creates a schema representing this
new knowledge, shown in figure 5.6. Although the finger appears in the same
visual field that the object occupies, this is not the same physical location. As
discussed in chapter 4.1.2, the projection of the distant object on to the robot’s vi-
sual fields results in the appearance that the finger is in the same location, despite

there being a large difference in the depth between the two physical locations.

Pre-conditions Action Post-conditions
Object 3 in field 87 | Joint configuration | Object 3 in field 54
0.87, 2.26 Finger in field 87

Figure 5.6: A new specific schema is created representing the assistance the robot

received from a third party moving an object when that object was pointed towards.

Due to the random, non-contiguous nature of the visual fields the Adept
system must learn each pointing location individually, rather than creating a
generalised representation of the pointing action. These are learnt as specific

counter examples to the generalised touching schema.

5.3.2 1Cub results

First the iCub is given the opportunity to learn a new touching schema, shown in

figure 5.7, which makes use of the depth information provided by the iCub’s stereo
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vision. From this it learns that the general touching schema is only successful if

an object is within its reachable work area.

Pre-conditions Action Post-conditions
Target: Reachable obj. $a at $x,3y

Reachable obj. $a at $x,$y | Hand at $x,$y Hand at $x,$y
Touching obj. $a

Figure 5.7: The iCub is able to learn a more expressive touching schema which

incorporates knowledge about the distance of an object.

When the iCub is presented with an object which is out of range the gen-
eralised touching schema doesn’t get excited, unlike with the Adept. This is
because the pre-condition of the object being reachable is not satisfied and no
combination of actions currently exist to make it reachable. Instead a more basic
reaching schema, figure 5.8, is activated which simply attempts to put the hand
in the location the object currently occupies, with no prior expectation of the

result beyond both the hand and the object being in the same place.

Pre-conditions Action Post-conditions
Reach to 48.52, 16.03 | Hand at 48.52, 16.03

Figure 5.8: The iCub is reminded of a simple reaching action involving the loca-

tion the object now occupies.

From the perspective of an outside observer using a primitive reaching schema
instead of a general touching schema provides the same visual appearance of the
robot seemingly producing a crude pointing gesture. However the internal ex-
pectations of the robot are quite different, the Adept with its limited sensory
information believes that it can touch the object, while the iCub is able to deter-
mine that the approach it has used previously for touching objects is not possible
in this scenario. Instead the iCub selects the next most relevant schema, one
which has no knowledge about objects but has a relationship with the position
the object occupies, similar to the actions taken when first learning to touch
nearby objects.

A specific schema representing pointing to this location is then created, figure

5.9, showing that if object 3 is out of reach and is in that specific location then
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reaching towards it will result in the object being moved to another specific

location. As with the Adept, the iCub’s hand appears to be in the location that

the object previously occupied, but is in fact at a different depth. This is due to

both the object’s initial position and the hand’s final position lying in the same

gaze direction.

Pre-conditions Action Post-conditions
Unreachable obj. 3 at 48.52, 16.03 | Reach to | Reachable obj. 3 at 14, 76.12
48.52, 16.03 Hand at 48.52, 16.03

Figure 5.9: A schema representing pointing to a specific location.

Unlike with the Adept, if we then show a few additional examples with dif-

ferent objects in different locations a generalised schema can be formed which

represents pointing to any distant location, shown in figure 5.10.

Pre-conditions

Action

Post-conditions

Unreachable obj. $a at $x, $y

Hand at $x, $y

Target:

Reachable obj. $a at 14, 76.12
Hand at $x, $y

Figure 5.10: A generalised schema representing pointing to any location can be

created by employing the depth perception available on the iCub.

While the resulting schema has most of its parameters generalised the final

location that the object arrives at remains specific as this can not be predicted

from any of the other values. In addition to this the final location can change in

an unpredictable way, as this is selected by the human assistant when moving the

object closer to the robot. The schema memory keeps track of all the different

locations it has seen the object appear at and selects the most frequently expe-

rienced one as its prediction. The utility of this ability is investigated further in

experiment 6.
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generalisation and staged learning

5.4 Experiment 3: Comparison of performance
with and without generalisation and staged

learning

The aim in each of the following scenarios is for the robot to learn to touch an
object placed at any location inside its working area or point to an object if placed

outside of the working area.

5.4.1 Scenario 1: Staged learning with generalisation

In this scenario the robot is given the opportunity to first learn how the movement
of its arm can effect its visual perception of the world. After this a small blue block
is introduced and the excitation this causes should result in the robot reaching
towards it. Upon contact with the object the robot will receive a signal from its
touch sensor. The object will then be moved into two or three further positions
on the table, the expectation being that the robot will be able to generalise these
few examples to represent touching the object anywhere on the table. Once a
generalised schema representing this is created the object will then be moved
into a position that the robot cannot reach, however in attempting to touch the
object it will form a pointing motion [101, 111] but will not receive a direct touch
sensation, providing a counter example in which the generalised solution does not
hold.

The placement of objects, with the exception of objects the robot has pointed
towards, is done while the robot is not performing actions. For the purposes
of schema creation the robot only evaluates the world immediately prior to and
immediately after acting, so by only moving objects to new locations when the
robot isn’t acting we avoid the robot learning that objects always move when
touched, which is a side effect of the experimental conditions rather than an
actual property of the world.

This scenario has been performed both on the Adept robot and within the
Adept simulator, to show that the techniques outlined here translate across to

usage on real systems.
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5.4.2 Scenario 2: Staged learning without generalisation

As in scenario 1 the robot is first allowed to learn the visual changes caused by the
movement of its end effector, after which an object is introduced. However, unlike
the previous example the system’s ability to generalise from past experiences is
disabled. As a result, to form an equivalent representation of the world the object
must be placed in each visually distinct location upon the table.

Due to the requirement to place the object in each location on the table
this scenario was only performed in the simulator where this activity could be

automated, greatly reducing the experimentation time.

5.4.3 Scenario 3: Learning without stages, with generali-

sation

In this scenario the opportunity to learn about the effects of moving its manipu-
lator prior to interaction with objects is denied to the robot.

As this scenario required thousands of actions to take place, in addition to
the requirement from scenario 2 in which the object must be repositioned many

times this scenario was also only performed in simulation.

5.4.4 Results

Scenario Schemas produced
Scenario 1 (Physical Robot) 115
Scenario 1 (Simulated Robot) 227
Scenario 2 (Simulated Robot) 347
Scenario 3 (Simulated Robot) 19244

Table 5.1: The number of schemas produced in each experimental scenario.

Tables 5.1 and 5.2 summarise the number of schemas required to represent
the scenario and the number of times an object must be moved to a new location
in order to learn this representation.

The difference in figures for the physical and simulated robot in scenario 1 is
due to the differences in the visual properties of the two systems. The simulated

robot has a much wider field of view, resulting in a greater number of visual fields.
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generalisation and staged learning

Scenario Object placements
Scenario 1 (Physical Robot) 2
Scenario 1 (Simulated Robot) 2
Scenario 2 (Simulated Robot) 100
Scenario 3 (Simulated Robot) 100

Table 5.2: The number of example object placements needed before a complete

representation of each scenario can be achieved.

It is important to note that while the difference between scenarios 1 and 2 may
not be that great in terms of the number of schemas created, a similar number of
additional schemas would need to be added for every new object encountered by
the system due to the lack of generalisation in this scenario. So while scenario 3
has a far greater number of schemas, arguably it can represent the robot’s possi-
ble interactions with the world more completely as it can generalise to different
objects without requiring object-specific learning. Additionally the number of
object placements required to train the system in scenario 2 is much higher as
without generalisation the object must be seen in each position on the table to
build an equivalent representation of object touching, whereas in scenario 1 only 2
examples are required before the system is able to generate a valid generalisation.

The large number of schemas and actions required to form a complete repre-
sentation in scenario 3 is a result of the robot not being given the opportunity to
learn about the effects of its actions in a simpler context. As such it incorrectly
considers the presence of an object in a particular field to be a pre-condition
of any possible action (it has never experienced these actions without an object
present). While our chosen mechanism for avoiding this problem is the use of
a series of learning stages, gradually increasing in complexity, an alternative so-
lution to this problem might be to make use of a more complex saliency filter
to make additional assumptions about what may or may not constitute a pre-
condition. However we believe our staged learning approach offers a more flexible
solution as it allows the system to be trained in a variety of environments, rather
than pre-programming it with assumptions about the world in advance. This
flexibility is demonstrated to some extent by the fact that the same learning
mechanism is capable of working with two different embodiments which have dif-

fering sensorimotor capabilities. Additionally, another solution to this problem is
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possible through an extension to the generalisation algorithm, this enhancement

is discussed in chapter 6.2.1.

5.5 Experiment 4: Learning to grasp

Due to the requirement for grasping objects within this experiment only the iCub
was used. The robot begins this experiment with the knowledge gained during
the touching experiment (5.2), meaning it already knows how to reach out and
touch objects in any reachable location.

We begin by placing an object in front of the robot in a location at which it
has previously never experienced an object, leading to this having high novelty
and attracting the robot’s attention. We then allow the robot to ‘play’ with the
object, executing the most excited schema at each stage until it has learnt how

to grasp the object.

5.5.1 Results

Pre-conditions Action Post-conditions
Target: Object $a at $x,3y

Object $a at $x,$y | Hand at $x,8y Hand at $x,$y
Touching object $a

Figure 5.11: The generalised touching schema is excited by the presence of an

object.

The touching schema, shown in figure 5.11, is executed a number of times due
to the novelty of the experiences involved and their high relevance to the touching
schema. However after a short while the excitation drops below that of the next
most excited schema, which in this case is the grasping schema. The grasping
schema, shown in figure 5.12, is excited by the memory of the robot touching its
own hand when performing a grasp with no objects present, which it is reminded
of by the touch sensation it receives from the object it has reached towards.

Executing this whilst touching an object results in the robot successfully
grasping the object and receiving the sensation of holding an object. A new

schema is then created to represent this new information, shown in figure 5.13.
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Pre-conditions | Action | Post-conditions

Grasp Touching hand

Figure 5.12: A grasping schema learnt in the absence of objects is excited.

Pre-conditions Action | Post-conditions
Object 1 at 35, -66 Object 1 at 35, -66
Touching object 1 Grasp Hand at 35, -66

Holding object 1

Figure 5.13: A new schema is created to represent the unexpected effects of
grasping when an object is present.

As with the new touching schema this grasping representation can also be
generalised into the form shown in figure 5.14, which can represent the act of

grasping an object in any location. In this case a target action is unnecessary as

the grasp action has no parameters.

Pre-conditions Action Post-conditions
Object $a at $x, Sy Object $a at $x, Sy
Touching object $a | Grasp Hand at $x, $y

Holding object $a

Figure 5.14: A generalised schema representing the act of grasping objects in any

location once they have been touched.

Figure 5.15 shows the final state of the iCub at the end of the experiment,
having successfully grasped the object.
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Figure 5.15: The iCub, having successfully grasped an object placed in front of
it.

5.6 Experiment 5: Achieving target states

As discussed in chapter 3.3, the schema memory has the capacity to generate
plans of actions by connecting the results of one schema with the requirements
of another. In the following two scenarios we demonstrate this capacity and
show how previously learned generalised schemas can be employed to generate
plans when particular environmental configurations have not yet been directly

experienced.

5.6.1 Scenario 1: Pointing

This experiment was carried out across both the iCub and the Adept robots.
Each robot begins with the knowledge gained from the earlier pointing exper-
iment (section 5.3), with both robots having slightly different representations of
what it means to point at an object resulting from their differing perceptions of
the world.
We begin by placing an object outside of the robot’s work area, however rather
than allowing the system to execute the most excited actions as has been done in

previous experiments, we explicitly request a target state from the system. For
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this scenario our target is that the robot should be touching the object, as shown

in figure 5.16.

Target world state

Touching object 3

Figure 5.16: Both robots are given the target of touching an object.

5.6.2 Adept results

Because the Adept has no general concept of pointing, it has learnt to point
from a number of specific examples. One of these previously learned positions is
chosen as the starting point for the object and the plan illustrated in figure 5.17
is generated. If the object were to be placed in a location that the robot had
not yet had specific experience of it would fall back on its generalised touching
schema, having no way of determining that the object is out of reach from its
sensors, and so be unable to generate a valid plan.

When this plan is then executed the robot points towards the distant object
and then with the assistance of a third party moving the object, the robot is able

to reach out and touch the object in its new location.

5.6.3 1Cub results

In contrast to the Adept the iCub has formed a generalised understanding of
pointing based around its ability to determine whether an object is within its
reachable space by using its stereo vision system to arrive at a rough depth
estimate.

Figure 5.18 shows the plan produced by the iCub. Both the pointing and
touching aspects of the chain are generalised, meaning that this plan could be
constructed even were the object to be placed in some unknown out of reach
location in which an object had never previously been encountered.

As discussed previously in section 5.3.2, the robot assumes that the object
will be placed in a specific location after being pointed towards. We consider the
implications of this further in section 5.7, where we demonstrate that despite the
potential unreliability of the robot’s assumption this type of chain can still be

made practical use of.
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Pre-conditions

Action

Post-conditions

Obj. 3 in field 87

Joint configuration | Obj. 3 in field 54

0.87, 2.26 Finger in field 87
Pre-conditions Action Post-conditions

Obj. $a in field $x

Hand in field $x

ODbj. $a in field $x
Hand in field $x,

Touching

Figure 5.17: A specific pointing schema can be chained with the generalised
touching schema to form a plan of action which allows the robot to ask for assistance
in bringing an object close enough to be touched.

Pre-conditions

Action

Post-conditions

Unreachable obj. $a at $x, $y Target:

Hand at $x, $y

Reachable obj. $a at 14, 76.12

Hand at $x, $y

/

Pre-conditions

Action

Post-conditions

Reachable obj. $a at $x, $y

Hand at $x, $y

Target: Reachable obj. $a at $x, Sy

Hand at $x, $y
Touching obj. $a

Figure 5.18: The generalised pointing and touching schemas can be chained

together, allowing the iCub to request an object from any out of reach location

and then touch it.
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As with the Adept, when executed this plan correctly results in the robot
pointing towards the distant object and then with the assistance of a third party
moving the object, the robot is able to reach out and touch the object in its new

location.

5.6.4 Scenario 2: Grasping

Due to the requirement for grasping in this experiment only the iCub has been
used.

The robot begins in a state of having learnt how to both touch (5.2) and grasp
(5.5) objects. We place an object at a previously unseen location on the table,
In this scenario our target is that we want the robot to be holding the object
we just placed in front of it. This is illustrated in figure 5.19. We only need to
specify the aspect of the world state that we're interested in (holding an object),
rather than the complete state that it has previously encountered holding objects
in (i.e. with the hand and object in the same location). The robot should then
be able to chain together the relevant motor primitives required to achieve this

higher level goal.

Target world state
Holding object 3

Figure 5.19: The iCub is given the target of holding an object.

5.6.5 Results

Upon being presented with the object and the request for the final state of the
robot to be holding that object the robot constructs a chain of schemas, shown
in figure 5.20, which makes use of the generalised reaching schema to satisfy the
pre-conditions of the generalised grasping schema, which in turn satisfies the final
target of the robot holding the object. The execution of this chain results in the

robot reaching out to touch the object and then successfully grasping it.
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Pre-conditions

Action

Post-conditions

Obj. $a at $x, Sy

Target:
Hand at $x, $y

Obj. $a at $x, $y
Hand at $x, $y
Touching obj. $a

/

Pre-conditions

Action

Post-conditions

ODbj. $a at $x, Sy
Touching obj. $a

Grasp

ODbj. $a at $x, Sy
Hand at $x, $y
Holding obj. $a

Figure 5.20: The touching and grasping schemas can be chained together to form

a plan of action which allows the robot to reach towards and then grasp an object

at any location.

5.7 Experiment 6: Reasoning from unreliable

information

In this experiment we investigate the unreliable qualities of the previously learnt

pointing schema, shown in figure 5.21.

Pre-conditions

Action

Post-conditions

Unreachable obj. $a at $x, $y

Target:

Hand at $x, $y

Reachable obj. $a at 14, 76.12

Hand at $x, $y

Figure 5.21: Generalised pointing schema learnt in earlier experiments.

This schema assumes that the object will be placed in a specific location, how-

ever in this experiment we will defy this expectation by instead moving the object

to a new reachable location in which the object has not yet been encountered.

To allow for a more complex chain of actions only the iCub is used, making it

possible for us to request the robot go from a position in which the object is out

of reach to one in which the object is being held by the robot. This involves the

construction of a longer chain of schemas than previously encountered including

the use of the pointing schema. The final requested world state is illustrated in
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figure 5.22.

Target world state
Holding object 3

Figure 5.22: The iCub is given the target of holding an object, starting from an

object being out of reach.

5.7.1 Results

Upon being provided with the target state the robot forms a chain of actions
in which the generalised pointing schema is used to request that the object be
moved to the visual position 14, 76.12 in which it previously saw the object placed
most frequently during the learning of the pointing schema. Once the object is
in the new location the generalised reaching schema is used to touch the object
and finally the grasping schema is used to grasp it. This chain is shown in figure
5.23.

To show the robot’s belief in how this chain of actions will unfold we have
provided the instantiated version of all the generalised schemas used during the
chaining process. This is shown in figure 5.24.

Although the generalised schemas are instantiated during the planning pro-
cess, these instantiated schemas are never used directly. Instead the chain of
uninstantiated generalised schemas is made use of for actual execution. This
means that each generalised schema can be instantiated immediately prior to
execution based on the real state of the world, rather than the predicted state.

When we place the object in an unexpected location this does not interrupt
the currently executing plan because the generalised touching schema is then
instantiated based upon the new location. The final instantiated schemas used
by the robot are shown in figure 5.25.

However, this strategy can result in potentially ambiguous conditions when
multiple combinations of stimuli satisfy the requirements of a generalised schema.
As such a more robust, although slightly more computationally expensive, ap-
proach would be to utilise the instantiated schemas from the planning stage and
then employ the system’s ability to recalculate plans when an expected condition

is not met. This ability to adapt plans is demonstrated in section 5.8.
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Pre-conditions Action Post-conditions
Unreachable obj. $a at $x, $y Target: Reachable obj. $a at 14, 76.12
Hand at $x, $y Hand at $x, $y
Pre-conditions Action Post-conditions
Target: Reachable obj. $a at $x, $y
Reachable obj. $a at $x, $y | Hand at $x, Sy Hand at $x, $y
Touching obj. $a
Pre-conditions Action Post-conditions
Reachable obj. $a at $x, $y Reachable obj. $a at $x, $y
Touching obj. $a Grasp Hand at $x, $y
Holding obj. $a

Figure 5.23: The generalised pointing, touching and grasping schemas are chained
together, despite the unreliability of the pointing schema’s predictions the robot is

able to to request a distant object, reach out to it and then grasp it.
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Pre-conditions Action Post-conditions
Unreachable obj. 3 | Reach to | Reachable obj. 3 at 14, 76.12
at 20.38, 55.62 20.38, 55.62 Hand at 20.38, 55.62
Pre-conditions | Action Post-conditions
Reachable obj. 3 | Reach to | Reachable obj. 3 at 14, 76.12
at 14, 76.12 14, 76.12 Hand at 14, 76.12
Touching obj. 3
Pre-conditions Action Post-conditions
Reachable obj. 3 at 14, 76.12 Reachable obj. 3 at 14, 76.12
Touching obj. 3 Grasp Hand at 14, 76.12
Holding obj. 3

Figure 5.24: The iCub’s plan for grasping an out of reach object, with all of the

generalised schemas instantiated with concrete values, prior to execution beginning.
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Pre-conditions Action Post-conditions
Unreachable obj. 3 | Reach to | Reachable obj. 3 at 14, 76.12
at 20.38, 55.62 20.38, 55.62 Hand at 20.38, 55.62
Pre-conditions | Action Post-conditions
Reachable obj. 3 | Reach to | Reachable obj. 3 at 3.4, 74.95
at 3.4, 74.95 3.4, 74.95 Hand at 3.4, 74.95
Touching obj. 3
Pre-conditions Action Post-conditions
Reachable obj. 3 at 3.4, 74.95 Reachable obj. 3 at 74..95, 3.4
Touching obj. 3 Grasp Hand at 3.4, 74.95
Holding obj. 3

Figure 5.25: Instantiated version of the actual schemas executed when attempting
to grasp an out of reach object after the object has been placed in an unexpected

location.
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Despite the potential for the robot’s prediction of the object’s final location
being incorrect it is still beneficial for the robot to make this prediction when
planning. By making use of the unreliable information in this schema it is able
to produce a chain of schemas which can then be refined during execution to
cope with the real outcome. If the robot simply ignored this information as being
too unreliable it would be unable to form a chain in the first place, by making
use of a combination of unreliable information when planning combined with
the capacity to adapt during execution the robot is able to perform reliably in

uncertain circumstances.

5.8 Experiment 7: Coping with interference from

other agents

In this experiment we investigate the robot’s capacity to deal with active inter-
ference in its plans. This differs from the previous experiment in that rather than
simply requiring the robot to make use of information that is difficult to predict,
we actively work against the robot to contradict its expectations.

We give the iCub the target state of holding an object, figure 5.26, and place
an object in front of it. As the robot begins to reach towards this location we
move the object to a second location, requiring the robot to reconsider its plan

of action.

Target world state
Holding object 3

Figure 5.26: The iCub is given the target of holding an object.

5.8.1 Results

Upon being presented with the object and the target condition the schema mem-
ory generates the same plan of action seen in 5.6.4, connecting the generalised
reaching schema together with the generalised grasping schema to allow it to
reach out and grasp the object. This plan is shown in figure 5.27.

When executing a chain of schemas the robot checks the pre-conditions of

each schema in the chain immediately prior to its execution. If the previous step
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Pre-conditions Action Post-conditions
Target: Obj. $a at $x, Sy
ODbj. $a at $x, $y | Hand at $x, Sy Hand at $x, $y
Touching obj. $a

/

Pre-conditions | Action | Post-conditions
Obj. $a at $x, Sy ODbj. $a at $x, Sy
Touching obj. $a | Grasp Hand at $x, $y
Holding obj. $a

Figure 5.27: The touching and grasping schemas are chained together to form a

plan prior to the interference of another agent.

in the chain has not gone according to the robot’s predictions and is no longer
compatible with the next step in the chain it constructs a new plan starting from
the current state of the world.

Figure 5.28 shows the schemas executed by the robot, instantiated with their
final values. The robot initially reaches out towards the object’s first location,
during this the object is moved to a new location. This is no longer compatible
with the grasping schema as this requires that the robot is touching the object
before it can be executed, a new plan is then arrived at which involves first
reaching to the new location. After reaching to the new location the robot is able
to successfully grasp the object.

The final state of the robot, the initial starting location and the location to

which the object was moved can be seen in figure 5.29.
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Pre-conditions Action Post-conditions
Obj. 3 at 19.74, 81.98
Obj. 3 at 19.74, 81.98 | Reach to 19.74, 81.98 | Hand at 19.74, 81.98
Touching obj. 3

Interference: The object is moved to a new location while the robot reaches
for it. The chain is then recalculated, with the reaching step reintroduced to

move the hand toward the new location:

Pre-conditions Action Post-conditions
Obj. 3 at 3.4, 74.95
Obj. 3 at 3.4, 74.95 | Reach to 3.4, 74.95 | Hand at 3.4, 74.95

Touching obj. 3

Pre-conditions Action Post-conditions
Obj. 3 at 3.4, 74.95 Obj. 3 at 3.4, 74.95
Touching obj. 3 Grasp Hand at 3.4, 74.95

Holding obj. 3

Figure 5.28: The final chain of action accounting for third-party interference,

with all generalised schemas instantiated with concrete values.
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Figure 5.29: The iCub after having successfully grasped an object, despite inter-
ference from a third party. The object was originally placed at position (1), then

as the robot reached towards it the object was moved to position (2).
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5.9 Experiment 8: Learning and responding to verbs

5.9 Experiment 8: Learning and responding to

verbs

This experiment was carried out on the Adept system, an extended variation of
this experiment can be seen on the iCub in section 5.13.

For this experiment the system starts in the end condition of experiment
1, having learnt a generalised schema representing touching. An object is then
placed in a previously untested position to ensure that it is exciting enough for
the robot to reach for immediately. When the robot reaches for the object a
human operator says the word ‘touch’. The robot is then left to ‘play’ with the
object by executing the most excited schemas in its memory, until the excitation
provided by the novelty of the object drops sufficiently for it to begin executing
other unrelated schemas. The operator then says the word ‘touch’ again, and the
robot’s attention should be directed back to the object.

To confirm that this word has been associated with a generalised mechanism
for touching, the block is then placed in another previously untested location. The
operator once again waits until the robot is no longer interested in the object and
then says the word ‘touch’, as before the robot should then attempt to touch the
object.

The system receives linguistic input through the use of speech recognition
software, this converts the simple single word utterances to individual text tokens

which are then passed on to the schema memory.

5.9.1 Results

Figure 5.30 shows a number of labelled peaks highlighting key points within the
experiment. Peak (a) is the point at which the object is first introduced, along
with the first utterance of the word ‘“touch’. The excitation caused by seeing
the object causes the robot to begin interacting with it. After this, excitation
decreases and the robot begins executing schemas unrelated to the object. Peak
(b) shows the excitation increasing again when the word ‘“touch’ is heard for a
second time, activating the associated touching schema and directing the robot’s
attention back to the object. At line (c¢) the object is moved into a new position,

without any linguistic input. Finally peak (d) is the robot hearing the word
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‘touch’ again and being directed back to touching the object, now in a new

position.
1.40

(a)

1.20 ﬂ

1.00

0.80 (b)

(d)

~
Q

0.60

Excitation

0.40
touching

0.20

not touching

3 7 1115192327 313539 4347515559 6367717579
1 5 9 1317212529 33 3741 45 49 53 57 61 65 69 73 77

0.00

Actions

Figure 5.30: Top: Level of excitement provided by the most excited schema at
each time-step during the language experiments. Bottom: The type of schema
being executed by the system, with the high state representing a touching schema

and the low state being any other schema.

As mentioned in the section on associated observations the interactions be-
tween the associated observations and the excitation system can result in some
interesting effects when it comes to attempting to teach the system to respond to

spoken commands. As can be seen from these results it is only necessary to give
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a single example of a word for it to be potentially used as a command to direct
the robot back to the action being performed at that time. Although it should
be noted that while the intrinsically motivated excitation calculator is useful for
guiding the robot’s learning of new capabilities, it is inappropriate for command-
ing a robot, as the robot’s interest in the spoken words gradually decrease as they
become familiar. Once the excitation falls below that of the next most excited
schema that other schema will be executed in favour of the schema relating to the
word ‘touch’, until the excitation of that schema diminishes enough for the touch-
ing schema to once again be the most exciting. This is a product of the intrinsic
motivation system being targeted towards the learning of new information, as the
actions related to the word ‘“touch’ are not producing any new experiences the
robot switches to testing out other actions in an attempt to elicit new responses

from the world.

5.10 Experiment 9: Learning verbs in a noisy

environment

Similar to the previous experiment we attempt to teach the robot the word
‘touch’, however this time we do so with varying levels of linguistic noise. For
example rather than simply hearing the word ‘touch’ in association with a touch-
ing event the robot may hear a more complete sentence such as ‘this is touch’.
Similar sentences are then also used in other contexts, such as ‘this is grasp’ and
‘this is drop’.

This tests the capabilities of the excitation mechanism which relate to the
proportion of times an associated observation has been heard in relation to a
specific act. For example the word ‘touch’ is only heard in relation to touching
actions, whereas the word ‘this’ is heard in many different contexts. As such
hearing ‘touch’ will contribute a lot of excitation to touching related schemas,
whereas ‘this’ will only contribute a small amount of excitation to a wide range

of different schemas.
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5.10.1 Results

Figure 5.31 shows the excitation contributed to the selected schema for each
word in the three sentences. This contribution measurement is made prior to
the schema’s overall excitation being diminished by either the frequency of that
schema’s activation or by the length of the path required to reach it.

In each case we see that the word most relevant to a specific action is given
more saliency when considering the excitation of that action, while the more
general words (‘this” and ‘s’) produce a lesser contribution. This difference
becomes more pronounced if the general words are associated with even more
actions, figure 5.32 shows the difference in excitation contribution between the
word ‘this” and the word ‘grasp’ as the word ‘this’ is associated with increasing

numbers of different actions.
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Figure 5.31: The excitation contribution that each word in a sentence makes to

the schema that was eventually selected as being the most exciting.
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== THIS
=== GRASP

Excitation contribution

1 2 3 4 5 6 7 8 9 10

Number of schemas associated with 'THIS'

Figure 5.32: The excitation contribution towards the grasping schema of a general
word, ‘this’, and an action specific word, ‘grasp’, as the general word becomes

associated with increasing numbers of different schemas.

5.11 Experiment 10: Learning nouns and adjec-

tives

The capability of the system to associate observations with other observations,
discussed in section 3.2.4, includes a capacity to generalise these associations so
as to focus on specific sub-components (discussed in 3.7). This means that given
enough examples of otherwise different red objects alongside the word ‘red’ the
system should be able to form an association which accurately links the word to
the correct component of these visual observations.

We effectively use colours as nouns in our experiments as the robot’s visual
system identifies individual objects based upon their colour.

We make use of a schema memory that has previously developed on the iCub
and which has the capability to reach towards objects and grasp them with an
understanding that objects that are too far away are unreachable. However, the
experiment itself does not make use of the iCub, instead we simply feed stimuli

to the memory and record the resulting interpretation.
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5.11 Experiment 10: Learning nouns and adjectives

We first teach the schema memory the words ‘red” and ‘green’ as names for
two objects, when either a red or green object is presented in a number of different
locations. Each object is introduced separately from the other. We then record
the associations generated. In experiment 11 we take this further and use the
learned associations to assist in an object selection task.

In addition to learning the words ‘red” and ‘green’ as names for specific objects,
we then also teach the memory the adjectives ‘near’ and ‘far’. We do this by
presenting the stimuli of a number of different objects either inside the reachable
space coupled with hearing the word ‘near’, or outside of the reachable space

alongside the word ‘far’.

5.11.1 Results

Figures 5.33 and 5.34 show the generalised associations arrived at by the schema
memory after being introduced to the red and green objects alongside their cor-
responding names.

The colour and ID components both retain specific values, relating to the
object colour. The object ID remains specific because the underlying visual sys-
tem identifies objects purely based upon their colour as discussed in chapter 4.
All other components are generalised, which in the context of observation as-
sociations effectively means that they are ignored. When comparing a specific
observation encountered in the world with a generalised associated observation
the generalised values are populated based upon the specific observation, more

detail on this process can be found in chapter 3.2.4.

Visual observation

Colour: Red

Object ID: 1 Auditory observation
X: $a ) | Word: RED

Y: $b

Reachable: $c

Figure 5.33: An association between a red object and the word ‘red’.

131



5. EXPERIMENTS & INTERPRETATION OF RESULTS

Visual observation

Colour: Green
Object ID: 3
X: $a

Y: $b
Reachable: $c

A

Y

Auditory observation

Word: GREEN

Figure 5.34: An association between a green object and the word ‘green’.

Figures 5.35 and 5.36 show the associations learnt between objects inside the

robot’s workspace and the word ‘near’ and those outside the robot’s workspace

with the word ’far’.

All components of the visual observation other than the reachability property

are generalised allowing these associations to be applied to any objects in any

locations dependant purely on their distance from the robot.

Visual observation

Colour: $a
Object ID: $b
X: $c

Y: $d

A

Reachable: True

Figure 5.35: An association between an object within the robot’s reach space

and the word ‘near’.
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5.12 Experiment 11: Responding to simple sentences

Visual observation

Colour: $a

Object ID: $b Auditory observation
X: $c ) | Word: FAR

Y: $d

Reachable: False

Figure 5.36: An association between an object placed outside of the robot’s reach

space and the word ‘far’.

5.12 Experiment 11: Responding to simple sen-

tences

Building on the previous three experiments it should then be possible to direct
the schema memory’s attention to an object in a more specific way, through a
simple sentence consisting of a noun-verb pair. Instead of simply touching any
object when hearing the word ‘touch’ or performing any action on a red object
when hearing the word ‘red” we should be able to direct the schema memory’s
attention towards schemas which would result in the robot touching the red object
with a sentence of the form ‘touch red” (because no consideration is given to word

ordering this sentence could equally be presented as ‘red touch’).

5.12.1 Results

Having two objects, a red one and a green one, simultaneously placed in different
locations results in the possibility for generalised schemas involving a single object
to be instantiated in two different configurations. The two potential instantiations
of the touching schema are illustrated in figure 5.37.

When hearing the word ‘touch’ the overall excitation of both of these inter-
pretations are equal, shown in figure 5.38.

Upon hearing just the word ‘red’ the red instantiation of the grasp schema
is more excited than either of the touch instantiations, due to grasping having
been encountered much less frequently than touching prior to the experiment
beginning. The overall excitation for both the red and green interpretations of

the touch and grasp schemas are shown in figure 5.39.
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Pre-conditions Action Post-conditions
Obj. 1 (red) Obj. 1 (red) at 18.86, 78.79
at 18.86, 78.79 Hand at 18.86, 78.79 Hand at 18.86, 78.79

Touching obj. 1 (red)

Pre-conditions Action Post-conditions
ODbj. 3 (green) ODbj. 3 (green) at 21.35, 75.94
at 21.35, 75.94 Hand at 21.35, 75.94 Hand at 21.35, 75.94

Touching obj. 3 (green)

Figure 5.37: The two possible schemas which can be generated from instantiating

the generalised touching schema.

1.8
1.6
1.4
1.2

—_

Excitation

0.8
0.6
0.4
0.2

Red Instantiation Green Instantiation

Schemas

Figure 5.38: The total excitation of the two possible touch schema instantiations

upon hearing the word ‘touch’.
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0.9
0.8
0.7
c 0.6
£ 05
Z 04
0.3
0.2
0.1
0
Grasp (Red) Grasp (Green) Touch (Red) Touch (Green)
Schemas

Figure 5.39: The total excitation of each possible instantiation of the touch and

grasp schemas upon hearing the word ‘red’.

However, upon hearing either the phrase ‘touch red’ (figure 5.40) or ‘touch
green’ (figure 5.41) both interpretations gain excitation overall due to there being
more stimuli to cause excitation, but the instantiation of the touch schema which
corresponds with the colour heard becomes more exciting than the alternative
version.

If the word ‘touch’ is heard either the red or green object may be touched and
if just the name of an object is heard, such as ‘red’, then the red instantiation of
the generalised grasp schema becomes most excited. However if the words ‘touch
red’ are heard then the excitation contributed from both words combine to cause

the execution of the red instantiation of the generalised touching schema.
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1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Excitation

Red Instantiation Green Instantiation

Schemas

Figure 5.40: The total excitation of the two possible touch schema instantiations

upon hearing the sentence ‘touch red’.
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Figure 5.41: The total excitation of the two possible touch schema instantiations

upon hearing the sentence ‘touch green’.
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5.13 Experiment 12: Stacking objects with lin-

guistic scaffolding

This experiment was only conducted on the iCub due to the requirement for
grasping.

The robot begins with the knowledge gained from experiments 5.2 and 5.5,
giving it the ability to reach towards and grasp objects. In addition to this, prior
to the experimental stage beginning when the robot randomly selected a releasing
action the word ‘drop’ was spoken, regardless of whether or not it was currently
holding an object. This dropping schema can be seen in figure 5.42, as it was
learnt at a time when no objects were being held the robot has not yet found any
result from performing this action.

The stack observation is a simple representation of the visual system having
detected one object being on top of another. With more accurate and repeatable
depth perception this relationship could instead be learnt as a change in the
height of an object after being placed on other objects, rather than having explicit

detection for one object being on top of another in the visual system.

Pre-conditions | Action | Post-conditions

Release

Figure 5.42: The initial dropping schema, generated without an object present.

The experiment begins with a single object being placed in the robot’s work
area in a previously unused location. The robot is then allowed to act based on its
intrinsic motivation until the object has been grasped. A second object is then
introduced in a new location. When the novelty of the second object attracts
the robot’s attention and it reaches towards it (whilst still holding the original
object) we say the word ‘drop’. This should remind the robot of the releasing
actions it performed previously and result in the robot constructing a small tower

of objects.

5.13.1 Results

When the first object is introduced the generalised touching schema is excited,

shown in figure 5.43.
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Pre-conditions Action Post-conditions
Target: Obj. $a at $x, Sy
ODbj. $a at $x, $y | Hand at $x, Sy Hand at $x, $y
Touching obj. $a

Figure 5.43: The generalised touching schema is excited by the presence of the
first object.

This then leads on to the grasping schema becoming excited based upon the
sensation of touching the object, resulting in the robot holding the first object.
Once the second object is introduced the touching schema is excited again, causing
the robot to reach out towards the new object, whilst still holding the original
object.

At this point if the robot is left to continue acting purely based on the current
stimuli it may reach to this location a number of times, however eventually the
excitement caused by the new object will diminish in the absence of any unex-
pected results and the robot will start activating other less interesting schemas,
resulting in it reaching to other locations, eventually the releasing schema will
get activated but it is unlikely that the robot will be near the second object at
this time. If we allow the robot to play randomly for a long period of time it
might stumble upon the ability to stack objects eventually.

Instead of this random trial and error approach we make use of the language
learning the robot achieved in its earlier stages of development. When the robot
holds the first object over the second we say the word ‘drop’. This word became
associated with the releasing schema during the robot’s early development and
contributes to exciting that schema now. The relative rarity of hearing auditory
input makes this very exciting, and so causes the associated releasing schema to
be executed.

Upon dropping the object the robot discovers that a new unpredicted visual
sensation is experienced, of seeing one object stacked on top of another, and so
a new schema is created to represent this, shown in figure 5.44. The final state
immediately following the robot having created a small stack of objects can be

seen in figure 5.45.
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Pre-conditions Action Post-conditions
Obj. 1 at -3.63, 80.09

Obj. 1 at -3.63, 80.09 Obj. 3 at -3.64, 80.09
Obj. 3 at -3.64, 80.09 | Release Hand at -3.64, 80.09
Holding Obj. 3 Touching obj. 1
Touching obj. 3

Obj. 3 stacked on Obj 1

Figure 5.44: A new schema is then created representing the stacking of one object

on top of another.

Figure 5.45: The iCub, having constructed a stack of two objects. The square
object at the base of the stack is invisible to the iCub and is used to ensure that
objects are a safe distance above the work surface, from the iCub’s perspective it

has created a stack consisting of the red object and the green object.
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5.14 Experiment 13: Interpreting others’ actions

In this experiment we investigate the schema framework’s potential for interpret-
ing the actions of other agents. By considering the state of the world prior to
an agent acting and the state of the world after the agent has acted the schema
memory is able to infer the action it would have taken in the same context to

achieve that result.

After recognising another agent’s action from an egocentric perspective the
memory can then determine which previously useful schema chains this action
might belong to. This then allows the system to make a number of guesses as to

the other agent’s final intention.

We make use of a memory that has previously developed on the iCub and
which has the capability to reach towards objects and grasp them. However, the
experiment itself does not make use of the iCub, instead we simply feed stimuli

to the memory and record the resulting interpretation.

We present the memory with the sensation of first seeing an object, and
then seeing another agent’s hand touching the object. From this we request the
memory’s interpretation of what the other agent has just done and what they

might be planning to do next.

5.14.1 Results

Upon being presented with information about the initial conditions of the world
and the other agent’s effect upon the world, but lacking any concrete information
about the action performed, the schema memory is able to relate this to its own
actions and determine the schema that it would have executed to achieve the
same effect in that context. Figure 5.46 shows this process occurring.

While the results of the other agent’s actions are given in terms of specific
values the schema memory is able to relate this to a generalised representation of
the act of reaching out and touching an object, giving the robot a more general

understanding of the action taking place.
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Pre-conditions Action Post-conditions
Obj. 3 at -3.24, 80.70

Obj. 3 at -3.24, 80.70 Hand at -3.24, 80.70
Touching obj. 3

| |

Pre-conditions Action Post-conditions
Target: Obj. $a at $x,83y
Obj. $a at $x,3y | Hand at $x,$y Hand at $x,$y
Touching obj. $a

Figure 5.46: The actions of another agent are interpreted in terms of actions
learnt by the iCub.

Once the other agent’s actions have been related to the schema memory’s own
action representations it is able to consider this in the context of chains of actions
which the robot previously found useful itself. In this way it is able to predict
what the next action the other agent may take and what their ultimate goal may
be. In this case the memory finds that the touching schema has previously been
useful in a chain of actions leading to holding an object and so predicts that this
may be what the other agent may be engaged in. This final prediction of the

other agent’s intentions is illustrated in figure 5.47.
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Pre-conditions Action Post-conditions
Target: Obj. $a at $x, Sy
ODbj. $a at $x, $y | Hand at $x, Sy Hand at $x, $y
Touching obj. $a

/

Pre-conditions | Action | Post-conditions
ODbj. $a at $x, Sy ODbj. $a at $x, Sy
Touching obj. $a | Grasp Hand at $x, $y
Holding obj. $a

Figure 5.47: The chain of potential actions inferred from observing another agent

acting upon the world.

5.15 Overall progression

Tables 5.3 and 5.4 summarise the progression taken by the two robots, in the case
of the Adept this includes learning to point and to touch, and in the case of the
iCub this also includes grasping and forming a stack of objects. In each case we
show the number of specific schemas learnt, the number of generalised schemas
learnt and the number of actions taken to achieve that learning. We believe the
number of actions taken to be a more reliable measure of learning efficiency than
the actual time taken, as the time is largely dependent upon factors such as the
robot’s motor speed and in the case of certain experiments is influenced by the

time taken for other agents to provide social feedback.

Scenario Schemas learnt | Generalised schemas | Actions
Initial learning 111 0 111
Learning to touch 113 1 113
Learning to point 135 1 135

Table 5.3: Cumulative totals of schemas produced when following a progression
from a ‘new born’ state to pointing behaviour on the Adept arm system. The

‘schemas learnt’ column does not include generalised schemas.

As we saw in section 5.3 the representation of space provided to the Adept
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robot prevents it from being able to form a generalised schema to represent point-
ing, instead to construct a representation of locations in which objects can be
pointed towards rather than touched it must explicitly experience the act of
pointing towards these locations and form a specific schema for each one. With
the size of the visual fields and valid joint configurations of the robot this results
in twenty two fields in which the robot can point towards objects, each of which
must be learnt individually. Whereas on the iCub only two examples of distant

objects are required, after which a generalised schema can be created.

Scenario Schemas learnt | Generalised schemas | Actions
Initial learning 50 0 20
Learning to touch 52 1 o7
Learning to point 54 2 59
Learning to grasp 56 3 63
Stacking objects 57 3 67

Table 5.4: Cumulative totals of schemas produced when following a progression
from a ‘new born’ state to object stacking on the iCub. The ‘schemas learnt’

column does not include generalised schemas.

A disparity can be observed in the number of actions taken when learning
the generalised touching schema versus the grasping or pointing schemas. This is
because the bias towards repetition of new schemas causes the robot to repeat the
touching action a number of times, however in the case of grasping and pointing
the conditions under which these schemas can be executed are no longer present
in the environment, so while these schemas retain a high level of excitation them-
selves the fact that a chain of schemas is required to activate them reduces their
overall excitation in the current environmental conditions. Were these conditions
to be repeated, e.g. if the robot were to be presented with a distant object to
point towards, then these schemas would be excited and result in the repetition
of that action.

We believe that the low number of actions required to learn useful general
representations of different skills makes this approach particularly suited to social
learning with human participants. This allows the human social partners to
interact in a relatively natural way with the robot, as it requires only a small

number of examples to form workable hypotheses.
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Chapter 6

Conclusions

In this thesis we have presented a framework for schema learning containing a
novel algorithm for schema generalisation through parameterisation, and an ap-
proach to associated experiences that allow for language learning in an otherwise
causally oriented framework.

We have then made use of this schema learning mechanism to support the
investigation of a psychologically inspired developmental progression and have
demonstrated how this progression can simplify certain learning tasks.

To drive action in this framework we have developed an intrinsic motivation
algorithm suitable for directing the schema learning system towards actions likely
to elicit further knowledge about the environment.

These advances have all been combined into a series of experiments culmi-
nating in a humanoid robot starting with very little knowledge about the world
first learning how to interact with single objects by touching and then grasping
them and eventually developing the skills necessary to build a stack of objects
and interpret the actions of other agents.

We demonstrated three different ways in which the robot’s decision making
could take place. First, through purely intrinsically motivated excitation based
around a combination of the novel aspects of the world and remembered expe-
riences. Second, by providing the robot with an explicit goal and allowing it
to produce a plan of action utilising the knowledge gained during its earlier in-
trinsically motivated learning. Third, by using language to influence the robot’s

internal motivation and so guide it towards actions which the robot might not
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otherwise be reminded of by the current state of the world. This third approach

extends the first to include social influences in the robot’s motivation.

6.1 Contributions

Below we discuss the four main contributions made by this work, summarising
the findings of the experiments performed upon the system and highlighting the
interdependence of these contributions, with each providing useful support and

extensions to other aspects of the system.

6.1.1 Developmental progression

Throughout the experiments in chapter 5 we have employed a staged, develop-
mental process, with each experiment building upon the competencies developed
during earlier experiments.

Initially the robot performs some basic motor babbling and learns the results
of its most basic movements, after which we introduced objects for the robot
to interact with. From this it develops general representations for touching and
grasping objects, requiring only a small number of examples.

A comparison was then performed of how two robotic systems may arrive
at different representations for pointing gestures, with these pointing gestures
arising out of more general reaching behaviour. This remains consistent with
the idea that proto-imperative pointing may develop as a result of early reaching
behaviour in infants.

While this form of pointing offers the robot a simplistic mechanism for commu-
nicating its desires to other agents, we further develop the robot’s communica-
tive capacity by introducing spoken language. First we introduce verbs which
the robot learns to associate with corresponding schemas. Because the robot has
been able to form generalised schemas representing entire concepts with a single
schema it is possible for these verbs to be learnt quickly and associated with
a whole class of actions. Employing this generalisation mechanism on associa-
tions between individual observations within a schema then allows us to teach
the robot nouns and adjectives which become associated with the fine grained
details within a schema. Combining these two stages then allows us to direct the

system to perform specific actions on specific objects.
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We then demonstrate how this learnt capacity for language can assist in fur-
ther motor learning activities. A parent may try to scaffold their child’s learning
by directing their attention towards actions that may expose the child to new ex-
periences. We take a similar approach by presenting the robot with two objects
to play with and then once the robot is holding one object over the other we say
the word ‘drop’, reminding the robot of dropping actions it has performed in the
past. By dropping one object on top of another a small stack is formed, allowing
the robot to experience a new way in which objects can interact with each other.
The robot can then use the knowledge gained from this scaffolded example to
construct stacks of objects without assistance in the future.

Finally we show how a robot can make use of its own experience to interpret
the actions of other agents and their potential goals. When the system is pre-
sented with the experience of seeing another agent reach towards an object it is
able to relate this to its own general concept of reaching for objects, from there
it can infer that the other agent may be attempting to grasp the object as this is
what the robot has used its reaching ability as a preliminary step for in the past.
By having experienced these chains of actions during the robot’s development it
is able to understand the actions and goals of others, relating them closely to its

own experience.

6.1.2 Algorithm for schema generalisation through pa-

rameterisation

We introduced a novel algorithm for schema generalisation based around the pa-
rameterisation of properties within schemas. We demonstrated how this approach
allows for the fast generation of hypotheses about the world based on very sparse
data, these hypotheses can then be tested by the robot applying them to new
scenarios and determining their reliability.

Rather than simply determining which aspects of the schema may be inter-
changeable with other values as many existing schema systems do, the generalisa-
tion mechanism presented in this work attempts to find generalisable relationships
between the pre-conditions, the action and the post-conditions of a schema. This
allows for the formation of hypotheses about how an interaction may work at a

more abstract level.
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Schemas generalised in this manner allow the robot to represent entire con-
cepts such as touching and grasping objects with a single schema. These abstract
schemas are then transformed into concrete schemas based upon the current per-
ception of the world at the time they are activated. By creating an abstract
representation for a concept it becomes possible to associate words with these
schemas using only a small number of examples, were these concepts represented
by a large number of separate concrete schemas it would be problematic to form
these associations with all the relevant schemas.

This approach also greatly reduces both the total number of schemas required
to represent the results of the robot’s actions and the number of actions required
to learn a concept. By keeping the total number of schemas low we reduce the
computational requirements of operations such as calculating schema excitation,
which is performed upon all schemas, and the finding of schema chains for achiev-
ing multi-part actions.

While other generalisation mechanisms would also reduce the number of schemas
required, we believe that the generalisations arrived at by our approach offer a
strong benefit in terms of understandability. It is relatively easy to immediately
evaluate the hypotheses generated by the robot and to understand the relation-

ships between actions and effects that they represent.

6.1.3 Associated observations in schema learning

While the definition and use of schemas in psychology is quite broad, computa-
tional schema learning systems typically focus upon causal relationships between
action and effect. This same approach forms the central mechanism within our
own schema learning system, however in addition to this we introduce a capacity
for associating transient experiences which occur during an action but have no
permanent observable effect upon the world.

It is this facility which provides the robot with the ability to learn language.
Spoken words can become associated with entire schemas, providing a framework
suitable for the learning of verbs. Nouns and adjectives can then also become asso-
ciated with properties within a schema, by employing the same parameterisation

based generalisation mechanism used for generalising schemas, these associations
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can be tailored to either individual or groups of properties whilst discarding as-
pects of the related sensory information that are irrelevant to the word being
learnt.

These verbs can then be used to suggest specific actions, increasing the ex-
citement of their related schemas. Typically this will involve the selection of a
generalised schema which has the capacity for being instantiated in a number
of different ways, for example a grasping schema may be used to grasp any of a
number of objects presented to the robot. By combining the verbs with either
nouns or adjectives into simple sentences a specific interpretation of a generalised

schema can be given greater precedence within the excitation system.

6.1.4 Intrinsically motivated schema learning

The intrinsic motivation system introduced in this work provides the main driving
force behind action within our framework. The approach taken focuses on per-
forming actions which are likely to elicit additional information about the world
and how the robot can interact with it. This is done by directing the robot’s
attention towards novel aspects of the environment and applying actions which
appear to have some commonality with the new sensations.

Throughout the developmental progression encountered in the experiments
the intrinsic motivation system was vital in selecting relevant actions which al-
lowed the robot to quickly learn to represent the ways in which objects and
other agents can be interacted with. With the addition of the language capac-
ity provided by the associated observations it becomes possible to influence this
motivation using spoken language and so guide the robot towards actions which
may not otherwise be afforded by the environment. This allows for a natural
scaffolding process to take place between humans and the robot.

The knowledge gained through the play behaviour emerging out of the intrinsic
motivation system can be used in the formation of chains of actions aimed at
achieving a given target situation, in this way the result of the learning from the
intrinsically motivated behaviour can be utilised by other motivational drives.
For example, the robot could be motivated to always carry out spoken requests,
moving the activation of language related schemas from being purely a suggestion
aimed at assisting the robot’s learning into a command with the purpose of aiding

a human in a task.
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6.2 Further Work

6.2.1 Discarding unnecessary pre-conditions through gen-

eralisation

The generalisation algorithm proposed in chapter 3.6 only considers the properties
of a schema’s observations as targets for generalisation. While this is sufficient
for all of the scenarios encountered by the robot in our earlier experiments, when
learning certain new skills in more complicated environments it would be bene-
ficial for the generalisation mechanism to be able to discard entire observations
from a schema’s pre-conditions to increase that schema’s generality.

For example if we consider a scenario in which the robot is presented with a
long object with two visually distinct ends and the robot grasps the object from
one end, the other end will appear in a different field from the one grasped. This
then opens up scenarios in which the robot can make use of the long object as a
tool to manipulate other distant objects. However before this can be achieved the
robot must be given the opportunity to learn how the distant end of the object
moves in relation to the grasped end. This requires the robot to go through a
process similar to the original hand fixation in which it moves the object to many
different locations and learns the result, however in the current implementation
this would lead to the robot incorrectly assuming that the position the object was
in prior to movement was a pre-condition of the schema generated to represent
that movement. In the hand fixation stage this is solved by explicitly ignoring
the hand as a possible source of pre-conditions, while this may be a reasonable
assumption for the hand it would not be possible to make this assumption for
arbitrary objects. Instead it would be more beneficial if after seeing a few ex-
amples of the object motion from different starting locations the generaliser was
able to propose a new schema with the unnecessary pre-condition of the object’s
prior location removed.

Algorithm 9 outlines an extended version of the generalisation algorithm which
includes this additional functionality. While this algorithm has been implemented
and tested in a number of small test cases it was not used for the experiments
detailed in this thesis, having been developed after the majority of these exper-
iments were completed. As such the algorithm has been included here in the

further work section due to the requirement for further comprehensive testing to
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be performed. In addition to this the removal threshold referenced in the algo-
rithm is currently a static threshold given a value of 2 in our tests, more work

must be undertaken to determine a suitable method for automatically calculating

this threshold.

151



6. CONCLUSIONS

Algorithm 9 Extended generalisation algorithm with the capacity for further

generalisation through the removal of extraneous pre-conditions.
function GENERALISE(newSchema, existingSchemas)

// Find similar schemas and possible target action
minSize = number of pre-conditions in newSchema
targetUsed = true
action = a new target action
for each schema in existingSchemas do
if schema already generalised then
continue
end if
if similar(newSchema, schema) then
Add schema to list of similarSchemas
end if
if newSchema’s action has no parameters then
action = a copy of newSchema’s action
targetUsed = false
else if newSchema’s action is the same as schema’s action then
// Find the result of this action in the simplest context
if number of pre-conditions in schema less than minSize and
schema has predictions and satisfies(schema, newSchema) then
minSize = number of pre-conditions in schema
action’s target = schema’s post-conditions
end if
end if
end for
if number of schemas in similarSchemas less than evidenceT hreshold
then
// Not enough evidence to generalise this schema yet
return
end if
if targetUsed and action’s target is null then
// Unable to find suitable target action
return
end if
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Algorithm 9 Extended generalisation algorithm with the capacity for further

generalisation through the removal of extraneous pre-conditions (continued).

for each schema in similarSchemas do
// Find different generalisations possible from each similar schema
variables = findVariables(schema)
for each observation in newSchema’s pre-conditions do
// Determine if pre-conditions can be removed to make a more gen-
eral specific schema.
if observation contains no generalised properties then
for each testSchema in stmilarSchemas do
if testSchema’s post-conditions equal newSchema’s post-
conditions and testSchema’s pre-conditions have a corresponding observation
with different property values to observation’s then
Add testSchema to removelList
end if
end for
if Size of removelList greater than removeT hreshold then
// Create new schemas with observation removed based upon
newSchema and the matching testSchemas
stmplerSchema = copy of newSchema
Remove observation from simplerSchema’s pre-conditions

if simplerSchema doesn’t already exist in the schema mem-

ory then
Add stmplerSchema to schema memory
end if
for each removeSchema in removelist do
stmplerSchema = copy of removeSchema
Remove observation from  simplerSchema’s pre-
conditions

if simplerSchema doesn’t already exist in the schema
memory then
Add simplerSchema to schema memory
end if
end for
end if
end if

end for
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Algorithm 9 Extended generalisation algorithm with the capacity for further

generalisation through the removal of extraneous pre-conditions (continued).
if variables is empty then

return
end if
trialSchema = copy of newSchema
trialSchema’s action = copy of action
usedVariables = generaliseState(reference to trialSchema’s pre-
conditions, variables)
if targetUsed then
usedVariables = wusedVariables + generaliseState(reference to
trialSchema’s target action, variables)
end if
generaliseState(reference to trialSchema’s post-conditions,
usedV ariables)
if generalisation matching trialSchema already exists then
continue
end if
satis fied = 0
for each testSchema in similarSchemas do
if satisfies(testSchema, trialSchema) then
increment satis fied
end if
end for
if (satisfied / number of schemas in similarSchemas) less than
satis factionThreshold then
continue
end if
Add testSchema to the schema memory.
end for

end function
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6.2.2 Extension of schema parameterisation to include con-

ditional statements

There are cases where it could be beneficial for the generalisation mechanism
discussed in 3.6 to be able to place conditions upon the parameters it devises. For
example there may be situations in which it is useful to restrict a generalisation to
only being applicable within one section of the visual space. This can be done by
placing certain conditions upon the parameters discovered during generalisation.
Figure 6.1 shows an example of how this may be represented via an additional

pre-condition within a generalised schema.

Pre-conditions Action Post-conditions

Object $a at $j, $k
Object $a at $j, $k Hand at $j, $k Hand at $j, $k
Condition: $j > 20 Touching object $a

Figure 6.1: An example of a generalised schema in which a parameter is con-

strained by an additional condition statement.

Currently the schema framework has the capacity to represent a schema such
as this, however little work has been undertaken to allow the generalisation com-

ponent to actually produce schemas of this form.

6.2.3 Constrained working memory

In the early stages of our current implementation we introduce artificial con-
straints on the robot’s abilities, preventing it from hearing words or focusing
on any objects other than its own hand. In the later stages we then constrain
the complexity of the environment, gradually introducing first one, then multiple
objects for it to interact with.

An alternative and potentially more flexible approach could be to constrain
the robot’s working memory so that it is only able to focus on a limited number
of sensory stimuli at once, then gradually increase this limit as the robot becomes
habituated to each stage of learning. This could be seen as similar in approach
to the focus of attention studies performed by Foner and Maes, who applied
restrictions to the sensory input of a schema system to reduce the complexity of

the learning problem [34].
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This would perhaps be likely to result in a number of additional less useful
schemas, where the robot has performed actions in which it does not have enough
information to accurately represent their results or their conditions in its current
state but it has the advantage that the robot can be started in a more complex
non-scaffolded environment.

It may also be beneficial to make the working memory limit a dynamic thresh-
old that adjusts based on how well the robot is performing in the current envi-
ronment. In this manner if a robot trained in one environment is exposed to an
entirely new environment it may retreat back into an earlier stage of develop-
ment, reducing its working memory, to allow it to learn the more basic elements
of that environment. Once these basic elements are well understood the threshold
would rise again allowing the robot to build upon these basic building blocks of

understanding to better interpret this new environment.

6.2.4 Embodied translation

Due to the manner in which words are associated with sensorimotor experiences
through associated observations it should be possible for the system to learn a
second language without further modification to the learning framework. While
work has previously looked at imbuing robots with an ability to translate between
multiple languages we believe our approach could provide one of the first examples
of truly embodied translation.

Due to the tight coupling of language learning to sensorimotor experiences
the system would be able to make more informed judgements about translations
by factoring in its current experiences of the world. For example if the robot has
been trained in both Welsh and English and is asked what the name of the fruit
in front of it is in Welsh it would be able to respond with the specific name of

the fruit, rather than a literal translation of the word ‘fruit’.

6.2.5 Training supervised classifiers based on schema knowl-

edge

In chapter 5.14 we demonstrated the capacity for the schema framework to recog-
nise others’ actions in terms of the concepts it had already learnt when interacting
with the world itself.
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By recording low level sensor data coincidental with this activity we believe it
may be possible to then train a more traditional supervised classifier to recognise
the action being taken by the other agent in the absence of known starting and
end conditions, allowing this action to be recognised in new contexts which the
robot has not previously experienced.

For example, by recording the raw visual data relating to a human hand
interacting with an object and then having the schema memory tag this with the
appropriate egocentric schema we begin to construct a dataset of labelled frames
which can be used for training a lower level system. This system’s classifications
could then be fed back to the schema memory upon detection of this action in the
future, providing the schema system with an additional mechanism for observing

the actions of others.
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Appendix A

Papers

A.1 IEEE International Conference on Devel-

opment and Learning 2010!

In the third paragraph of the communication section the terms ‘proto-imperative’ and
‘proto-declarative’ have been mistakenly reversed. As such that section should read: ‘The devel-
opmental progression previously outlined for robotic systems currently emerges proto-imperative
pointing before going on to make the leap towards treating this in a proto-declarative manner
in some of the later stages, while this may not be the exact progression experienced by children
it provides a simpler mechanism for a robot to learn pointing gestures, albeit in a less rich
developmental context.’
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Abstract—This paper reports on a developmental approach
to the learning of communication in embodied agents, taking
inspiration from child development and recent advances in the
understanding of the mirror neuron system within the brain. We
describe a part of the ROSSI project which focuses upon gestural
communication in the form of pointing. We are examining the
idea that pointing may be a key step towards simple spoken
communication and exploring the internal representations that
may be formed during this process.

The possible developmental stages leading to proto-imperative
pointing actions in a robotic system are outlined, and how this
may be built upon to result in an understanding of two word
speech is discussed. The learning mechanism is based around
Piagetian schema learning whilst the developmental path follows
a mixture of Piagetian and Vygotskian theories.

Index Terms—Language Development, Human-Robot Interac-
tion, Embodied Cognition, Grounding of Knowledge and Repre-
sentations

I. INTRODUCTION

The developmental approach to robotics in which systems
attempt to mimic similar stages of development to a human in-
fant has so far had little application to the possible emergence
of communication and symbol grounding in robotic systems.

In this paper we explore the emergence of early gestural
communication as a side-effect of sensorimotor robot learning
and how this may be used to boot-strap simple linguistic
communication for robotic systems. While we take inspiration
from infant development we do not claim to be accurately
modelling human development.

The success of this approach depends upon the willing
co-operation of other social agents to aid the robot in its
learning. The robot is not imbued with any innate theory of
communication, so if it never experiences communicative acts
from other agents it will be unable to learn to communicate
itself.

This approach allows symbolic meaning in the form of
language to be strongly rooted in the sensorimotor experience
of the agent, with the various concepts involved in communi-
cation arising out of interaction with the environment and other
agents. The same learning framework is used throughout all
stages of development (although not all aspects of the frame-
work are used at all stages) allowing more advanced concepts
to be grounded in simpler ones from earlier developmental
stages.

Mark Lee
Department of Computer Science
Aberystwyth University
Aberystwyth, Ceredigion, SY23 3ET, UK
Email: mhl@aber.ac.uk

A. Developmental stages

The following seven stages outline a possible robotic de-
velopmental progression leading from a “new born” state to
simple linguistic communication. This paper focuses mostly on
the stages leading to pointing gestures, with future work ex-
tending this to build up to speech. This progression, especially
in the latter stages, is based heavily upon that described by
Iverson and Goldin-Meadow [10], discussed further in section
II-A (communication).

1) Motor babbling: In this initial stage the robot has had no
prior experience of the world or of its own body. It performs
spontaneous motor actions in order to discover the properties
of its motor systems and its anatomical constraints.

2) Motor vision mapping: The movements learnt in the
previous stage are then mapped to the changes they create
in the robot’s vision system, this allows it to move its arm to
touch (or point towards) an object detected visually. While the
focus in this paper is on visual mappings this could equally
be applied to other sensor modalities.

3) Failed grasping leading to pointing: In attempting to
touch objects that lie outside of the work-envelope of the
robot it will incidentally perform what looks, to a human
observer, like a pointing motion. Through assistance from a
human observer, fetching the indicated object for the robot, the
robot’s representation of this action moves away from being
a direct attempt at manipulating the world towards an attempt
at social communication.

4) Recognising pointing in others: Using a goal directed
approach based on mirror neuron theory, the robot is then able
to learn to reciprocate, providing objects to humans (or other
robots) when they are indicated. This allows the structures
necessary for a simple give/take conversation to emerge prior
to the introduction of language.

5) Complementary one word speech with pointing: The
robot is then given auditory input (reduced to a text token
by speech recognition software) whilst it points at objects,
or whilst it sees a human or other robot point at an object.
This input is directly related to the object being indicated, for
example the word “ball” or “block”.

6) Supplementary one word speech with pointing: In this
stage the auditory input relates to the action being indicated
rather than the object itself. The pointing action has been used

978-1-4244-6901-7/10/$26.00 ©2010 IEEE
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in the preceding stages as a request for the indicated object,
so the word “give” becomes associated with this action.

7) Two word sentences: Finally the learnt speech can be
combined to allow the robot to form and understand two word
sentences of the form “give block”, replacing the pointing
behaviour from the earlier stages.

II. BACKGROUND AND RELATED WORK
A. Communication

Vygotsky suggested that pointing develops out of a failed
grasping behaviour in which the child attempts to reach for
an object which is too far away, the parent interprets this as
the child pointing at a desired object and as such fetches the
object for the child, thus associating a new meaning with the
act of reaching for a distant object [27], [14]. Initially all social
meaning in this act is inferred entirely by the parent, the infant
is making a real attempt to reach the object and failing, but
through the actions of the parent the infant comes to associate
the same communicative meaning.

This has been classified by many researchers as proto-
imperative pointing or ritualised grasping, used by the child
to indicate an object of desire to a nearby adult, and typically
emerges at around 10-12 months. On average 3 months [5]
after the emergence of proto-imperative pointing the child has
also learnt to perform proto-declarative pointing which is used
to acquire joint attention on an object with an adult.

There is however evidence presented by Masataka [17] to
indicate that proto-imperative pointing and proto-declarative
pointing may follow different developmental paths, with proto-
imperative pointing actually arising out of index finger exten-
sion for the purposes of object exploration. The developmental
progress previously outlined for robotic systems currently
emerges proto-declarative pointing before going on to make
the leap towards treating this in a proto-imperative manner
in some of the later stages, while this may not be the exact
progression experienced by children it provides a simpler
mechanism for a robot to learn pointing gestures, albeit in a
less rich developmental context. In addition to this Tomasello,
et al. [25] show that infants may possess a much deeper social
understanding at this stage than previously thought, able to
communicate a great deal through pre-linguistic gestures such
as pointing.

Butterworth [4] provides various evidence supporting the
theory that gesture is nearly universal on the road to further
language development.

Iverson and Goldin-Meadow [10] describe the early devel-
opmental path of infants learning to communicate verbally.
They show that in most cases infants follow a consistent
progression from pointing to two word speech, as described
in the later stages of the previously outlined developmental
progression.

B. Neuroscience

The mirror neuron system was first discovered in the brains
of monkeys [7], [22] and later studies showed a similar system
at work in the human brain. A mirror neuron is a neuron
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which fires both upon the execution of an action and upon
the observation of another agent performing the action. Each
mirror neuron is paired with a canonical neuron, however the
canonical neuron is only activated during the execution of
an action and not during its observation. This has prompted
speculation that the mirror neuron system may have been
crucial in the evolution of language [1].

Tettamanti, et al. [24] show that listening to action related
sentences can trigger a mirror neuron response in humans and
Kohler, et al. [11] have previously found that a noise related to
an action can trigger a response in monkeys. This adds further
weight to the idea that the mirror neuron system encodes
action content at an abstract level and that this content can
be activated auditorily. This suggests that language is strongly
linked to the sensorimotor system.

A study by Buccino, et al. [3] suggests that mirror neuron re-
sponses only occur for actions that the observer can duplicate.
For example humans watching a dog biting will show front-
parietal activity, while they will not when watching a dog bark.
This also shows that the mirror neuron system generalises to
different species, possibly suggesting that the goal of the action
has a much greater effect than the observation of the action
itself.

The goal directed nature of mirror neurons is further rein-
forced by a study by Umilta, et al. [26] in which the neural
response from monkeys was measured when they observed
the experimenter grasping an object and when they observed
a mimed grasp with no object present. It was found that the
mimed grasp produced no response, while the real grasp did.
It was also found that if the view of the object was occluded so
the final stage of the grasp wasn’t visible then some response
was still produced, suggesting that the goal was being inferred
from the action.

Oztop and Arbib [19] hypothesise that the mirror neuron
system may have evolved to provide feedback for visually
directed grasping with the social usage being an exaptation'
occurring when this became applied to the hands of others.

Oztop, Kawato and Arbib [20] provide a computationally
guided review of mirror neuron literature and provide box
diagrams of a computational model called the MNS model.
Bonaiuto, et al. [2] have made attempts to extend this model,
creating a more comprehensive version titled MNS2. Small
sections of this model have been implemented and tested, but
the model as a whole remains largely theoretical.

C. Robotics and artificial intelligence

Drescher [6] suggests a constructivist approach to learning
based on Piagetian ideas using the notion of “schemas”.
Schemas are units of knowledge associating perceptions, ac-
tions and predictions. If the environment is perceived to be in
a certain state then taking an action associated with this state
should cause the environment to change to match the sensor
values specified in that schema’s prediction.

! An exaptation being the exploitation of an evolutionary adaptation to serve
a different purpose than the one it initially developed for.
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In its simplest form a schema consists of a set of pre-
conditions, an action and a set of post-conditions (often
represented in the form pre-conditions/action/post-conditions),
providing a basic forward learning model.

Holmes and Isbell [9] extended Drescher’s work to enable
the use of continuous value sensors (the original implemen-
tation was limited to binary sensors). They showed that it
was possible to model Partially Observable Markov Decision
Processes (POMDPs) via this mechanism.

Guerin [8] has since used this approach in a simple sim-
ulated robotic environment, but as yet little work has been
performed using this technique on a physical robot.

Perotto, et al. [21] introduce a Constructivist Anticipatory
Learning Mechanism (CALM), which makes use of a schema
based learning mechanism. The schemas are organised in a tree
hierarchy going from most general to most specific, making it
possible for the system to fall back on more general solutions
if a specific one fails or is unavailable. In contrast to Holmes
and Isbell this system took a property based approach to the
environment providing a more direct mapping between the
environment and the agent’s perceptions than a state based
environment.

Lee, et al. [13], [12] discuss the use of a Lift Constraint,
Act, Saturate (LCAS) loop to artificially constrain the inputs
to the robotic system and so reduce the complexity of the
learning required at each stage of the system’s development.
This approach is similar to the scaffolding [15] performed
by parents when helping children to learn in that the staged
constraints placed upon the system’s sensory input provides a
framework that guides the robot through its development. Once
there is little novel input being found at one stage of learning
a constraint is lifted, allowing the system to build upon its
knowledge from the previous stage whilst being exposed to a
more complex and detailed view of the world.

Marjanovic, et al. [16] introduce a motor-vision mapping
system that learns to perform pointing motions towards visual
targets. Our system differs from this in that the one presented
by Marjanovic has an explicit goal of pointing, while in
our system this behaviour emerges as a side effect of other
developmental processes occurring at the same time and as a
product of social interaction.

Steels, et al. [23] show that the concept formation process
of agents must be based on similar sensor input and result in
similar conceptual repertoires for communication to develop
in a population of agents. It also shows that once a lexical
system is in place it can overcome the randomness inherent
in verbal communication.

Oudeyer and Kaplan [18] explore the intrinsic motivation
of language learning rooted in play and curiosity, using a
framework based around Vygotsky’s zone of proximal devel-
opment [28] (although this is termed “progress niches” within
this system). It shows how an intrinsic motivation system can
allow a robot to self-organise its learning process.
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III. HARDWARE CONFIGURATION

The hardware that the system is being tested on consists of
an Adept manipulator arm mounted on a rigid vertical back-
plane. The arm is configured to operate on a two-dimensional
manifold above a table upon which objects can be placed for
it to interact with, the manifold curves up at the extremities
tracing the outer limit of the robot’s work envelope allowing
for pointing towards distant objects. The arm has a single
“finger” as an end effector, which has four touch sensors
attached giving directional touch input. This end effector can
be used for interacting with objects by touching them and
pushing them around the work area and for communicating
by pointing at an object.

The vision system consists of an AVT Stingray F-046C
firewire camera, which provides a resolution of 780x580 at
up to 61 frames per second. This is mounted on a pan tilt
platform above the arm looking down on the work space.

This hardware setup can be seen in figure 1.

Fig. 1. The current hardware configuration.

Use of this learning framework in the context of a more
complex system, involving many more degrees of freedom, is
discussed briefly in section VII (future work).

IV. THE SOFTWARE FRAMEWORK

The system consists of two main components, the schema
memory and the developmental controller. The developmental
controller determines the goal of the system based on the
current excitation level and motivation, as well as handling
the reduction of complexity in sensory input based upon the
current learning stage. These sensor values are then passed to
the schema memory along with either an action or a desired
goal state, the resulting schema(s) are then executed and the
results stored for use in judging their suitability for future
tasks.

A. Schema learning framework

A similar approach to Drescher’s schema learning is used to
achieve the desired learning behaviour, albeit with a number
of modifications from Drescher’s original design to make
the technique more applicable to robotics. Unlike Drescher’s
binary system or Holmes and Isbell’s continuous value system
the schema framework makes use of discrete sensor values
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made up of sensorimotor fields which reduce the complexity
of the sensor input and motor output.

While a very symbolic schema representation has been
chosen here a neural implementation should give similar
results, however we believe that a more explicit symbolic
representation lends itself to easier analysis of the resulting
generated internal structures.

B. Schema chaining

The linking of pre-conditions and post-conditions from
different schemas (“schema chaining”) creates a traversable
network representing different world states and the actions
required to move between these states, as illustrated in figure 2.
Without schema chaining the robot’s interest in unreachable
objects would decrease as it failed to reach them. Schema
chaining allows for cases in which the feedback of an action
isn’t instantaneous to still be recognised as being useful. Thus
making the entire series of actions required to point at an
object, wait for another agent to move the object then touch
the object interesting to the robot, despite the reward (touching
the object) being at the end of the chain of actions.

Post-condition

Point towards Object in
object shared work area

—

Move object \

Pre-condition Action

Object outside
of work area

Object in
shared work area

Object in
mouth area

Fig. 2. A high level example of schema chaining, allowing the robot to
gain access to an object that would otherwise be outside of its reach through
communication with another agent.

C. Tracking of Schema Probabilities

The schema framework keeps track of the observed proba-
bilities of the post-conditions of each schema, allowing it to
predict the most likely outcome. The storing of probabilities
for the likelihood of individual items, instead of the probability
of the schema as a whole being successful (as proposed by
Drescher) allows the system to select the best action for
achieving its target goal, regardless of the likelihood of less
interesting side-effects of the action. For example it makes
little sense for the system to care how likely it is that a
particular block is moved when the goal of the action is just to
move the arm to a specific location, the movement of a block
(or lack thereof) is merely an uninteresting side-effect in the
context of this particular goal.

D. Schema Generalisation

The system periodically attempts to generalise its existing
schemas, the specific schemas from which these generalisa-
tions arise are retained and when an attempted action does
not meet the expected outcome from a general schema a
new specific schema is created, allowing future attempts at
refining the generalisation with the added information from the
failed tests. When performing an action a specific schema is
preferred over a generalised schema if one exists that matches.
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For example when seeing a number of specific schemas along
the lines of [object in field 5] / [move arm to field 5] / [object
in field 5, finger in field 5, touching] the system will generate
a general schema of the form [object in field $x] / [move arm
to field $x] / [object in field $x, finger in field $x, touching].

E. Mirror Neuron Influenced Schema Learning

To enable the schema system to mimic the behaviour of the
human/primate mirror neuron system it is split up in to two
distinct classes, traditional schemas, with pre-condition, action
and post-condition components, and “perceptual schemas”
which lack an action component and are used for observ-
ing the actions of another agent. These classes are linked
together when a perceptual schema and a traditional schema
have matching post-conditions allowing the observation of
other agents performing an action to be associated with the
observer’s motor schema for that same action.

Experiments with monkeys have suggested that their mir-
ror neuron system is largely dependent on the goal of an
action [7], [26], in that mirror neurons will fire when the
monkey observes the experimenter grasping an object, but
will not fire, or only fire very weakly, when they observe
a “pantomime gesture”, in which the experimenter performs
the same action but without an object present. The system
mimics this behaviour by using post-conditions as the linking
mechanism between the different schema classes, for example
the visual input of watching another agent move an object can
be associated with the motor behaviour performed when the
observer is themselves moving an object.

In addition to providing a mechanism for recognising the ac-
tions of other agents, this also provides part of the framework
necessary for spoken language. This will allow the linking
of auditory observations to actions and other observations,
helping the system move from a “motor-meaning” based
representation to a “symbolic-meaning” which is one of the
key differences between Piaget’s stage 3 and stage 4 infant.

E. Developmental controller

A control program has been developed that makes use of
the schema framework. The control system has two different
modes of operation, a “play” mode, in which it randomly
executes schemas based on their predicted excitement and
reward levels and a “task” mode, in which it can perform
more goal directed actions.

The resolution of the robot’s inputs are reduced by the
control program to speed learning. The possible joint con-
figurations are reduced to typically 200-300 combinations
depending on the robot configuration (referred to as the “motor
fields”). This is achieved by limiting the robot to the use of
two joints, each moving in 10 degree increments, a third joint
becomes accessible when the robot is at the outermost limit
of its two joint work envelope allowing the end-effector to be
moved outwards tracing a vertical arc to allow for pointing.
The visual system is similarly divided in to circular fields each
with a 10 pixel radius, referred to as “visual fields”, a specific
type of sensorimotor field. A new visual field is created each
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time the robot observes an object outside of its current fields,
with the centre point of this object forming the centre of the
field. The fields are initially discovered by the robot exercising
its previously learned motor schemas and observing its end-
effector entering the different visual fields [12].

The controller implements a Lift-Constraint, Act, Saturate
(“LCAS”) [13] based approach to staged learning. Additional
constraints are added to the robot’s sensory input, these con-
straints are lifted as the robot becomes habituated to its current
level of development. The point at which these constraints
should be lifted is determined by the system’s excitation level.
This excitation level is also used to decide which actions to
perform next, for example an action which would cause a
new schema to be created would be considered more exciting
than the execution of an existing schema. Whether an action
is executed or not depends on whether or not it is above
a certain threshold below the global excitation level. This
means that if most of the actions the robot is performing
are creating new schemas then it is unlikely to execute any
existing schemas, however once there are fewer new schemas
to discover it will begin to re-activate existing schemas with
a preference for those which have had the fewest activations.
Figure 3 shows the system reaching a plateau during the motor
babbling stage, once this has been reached the constraint on
the vision system is lifted and the robot begins to map visual
input to its existing schemas, the number of schemas does not
begin to rise again until the robot’s environment is made more
complicated through the introduction of wooden blocks for it
to manipulate. In addition to novelty-triggered excitation the
robot also receives a reward for successfully touching an object
(making such actions more exciting). This biases it towards
actions that may result in contact when an object is present,
this helps to speed learning by focusing the robot’s attention
on actions more likely to lead towards the desired behaviour.

250 T T T T T T T

Total schemas created

0 L L L L L L L

0 200 400 600 800 1000 1200 1400

Actions taken

160C

Fig. 3. As time progresses the robot discovers less novel situations requiring
new schemas and instead exercises existing schemas to test their reliability.
Once the developmental controller detects the saturation of this stage of
development the complexity of the input to the system is increased and the
schemas can be further refined.
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V. REPRESENTATIVE SCHEMAS
A. Motor babbling

Initially very basic schemas are created with no context,
representing only actions.

Action Post-conditions
Motor action
joint1=0.69
joint2=0.87
joint3=0

Pre-conditions

B. Motor vision mapping

Later the most basic visual result of these actions (the
end effector appearing in a different field) are added as
post-conditions.

Pre-conditions | Action Post-conditions
Motor action | End effector in field 7
joint1=0.69
joint2=0.87
joint3=0

C. Touching objects

Next the robot is given a few examples of touching objects
in different positions.
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Pre-conditions Action Post-conditions
Object in field 3 | Motor action | Object in field 3
joint1=0.23 End effector in field 3
joint2=0.43 Touching
joint3=0

Once a number of examples along these lines have
been viewed this gets generalised, to give a schema which
represents touching an object in any position on the work
surface.

Post-conditions
Object in field $x
End effector

in field $x
Touching

Action
Target action
End effector
in field $x

Pre-conditions
Object in field $x

In these generalised schemas we see the use of “target
actions” replacing direct motor actions, rather than causing
a direct change in the robot’s configuration they represent a
target set of post-conditions that should be achieved (which
is a subset of the post-conditions of the main schema). This
allows the generalisation to occur across the pre-conditions,
post-conditions and action with consistent variables.

D. Pointing counter-examples

In the case of pointing the system attempts to execute
the above generalised touching schema but fails, generating
a specific counter-example. Specific schemas are always
preferred over generalised schemas if both fulfil the same
conditions. This allows the system to learn where its
generalisation fails and create schemas that work in those



situations.

Post-conditions
Object in field 56

Action

Target action
End effector | End effector
in field 203 in field 203

Due to the random, non-contiguous nature of the visual
fields the current system must learn each pointing location
individually. In future experiments the system will be tested
with a predefined contiguous visual space allowing the genera-
tion of a second generalised schema representing the pointing
space with a conditional observation such as "$x > 1347,
where field 134 marks the shift from touching to pointing.

Pre-conditions
Object in field 203

VI. POINTING MECHANISM

The controller takes the system through two learning stages
to create a mapping between the motor system and the vision
system. This mapping allows the robot to move its end effector
in to a desired visual field, which can then be used for allowing
it to interact with objects (both by physically touching them
and moving them around itself and by pointing at them for
communication).

The first stage of this process is akin to Piaget’s first stage
infant, the robot goes through a period of “motor babbling”,
where it exercises all possible joint configurations and creates
schemas representing these actions. It receives no feedback
from these actions, merely generating a base set of schemas
that abstract higher level schemas away from explicit joint
commands, allowing them to instead refer to existing schemas
as their action components.

In the second stage the vision system is made available to
the robot and it begins to associate visual context with the
existing motor schemas. This is similar to hand fixation in an
infant. This stage is visualised in figure 4. The robot executes
the purely motor based schemas it has learnt in the previous
stage and forms a new visual field whenever it sees its end
effector outside of any existing fields, it then adds this as a
new post-condition to the executed schema. The end effector
is detected via the vision system, potentially it will add any
changes in visible objects as post-conditions, however at this
stage of the robots learning no other objects are presented to
it.

A

Fig. 4. A visualisation of the visual fields, part-way through their discovery.

The systems operates primarily on the X-Y plane using 2
degrees of freedom, illustrated in figure 5(a). To enable the
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robot to point at objects outside of its work envelope it is
able to slightly lift its end effector when at the furthest extent
of its normal range of motion, shown in figure 5(b). Both of
these planes are accessible to the robot throughout all stages
of learning, so it first learns to position its end effector in the
‘pointing’ plane prior to any objects being introduced for it
to point at as part of its random motor babbling and vision
mapping stages.

It is important to note that this is not giving the robot a
full 3D representation of the space it occupies as the robot
still effectively lacks accurate depth perception, however for
the purposes of this experiment that is unimportant and may
indeed be congruous with a child’s perception at this stage.
If similar operations were performed on a system with more
degrees of freedom the same outcome should be possible, with
the added benefit that the system would be able to point to
objects within its work envelope without touching them. We
only constrain the system to 2 DoF to greatly simplify the
lower level motor learning tasks.

%P\an/tilt camera

N

Sensor/motor fields X

Fig. 5. (a) Direct manipulation of objects is only possible in the X-Y plane.
(b) The robot’s motion is extended in to the Z’ plane allowing it to pointing to
distant objects. This is a simplified example, rather than having two distinct
vertical and horizontal planes the system operates on a manifold that curves
up at the extremities tracing the outside of the robot’s work envelope.

When first learning to point the robot views an object and
moves its end effector to occupy the same visual field, using
a generalised form of the schemas it has developed to allow
it to touch objects (and so receive a reward). However in this
case the schema does not successfully result in contact with
the end effector, instead it results (from the perspective of a
human observer) in a pointing motion towards the object. The
robot is receiving no reward when failing to touch the object,
however in the event that a human observer assists the robot
by moving the object closer it leads to a chain of events which
finally results in the robot touching the object and so being
rewarded.

A. Morphological implications

This approach raises certain morphological implications.
For a pointing gesture that a human would recognise to emerge
from this technique the robot in question must itself have a
roughly humanoid anatomy. Specifically it requires the robot’s
vision system to be positioned above the arm system looking
out in the direction of action. Additionally for the pointing to
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appear accurate the vertical distance between the vision system
and the arm should not be too great.

All current testing has been performed with humans with
prior knowledge that what they are about to view is intended
as a pointing gesture, it might be interesting to investigate the
effects this gesture has on people who do not already know
what to look for. The anthropomorphic characteristics of the
robot in question might play as large a part in this as the
quality of the gesture itself. However for now this is outside
the scope of the current investigation.

VII. FURTHER WORK

This paper deals primarily with the initial emergence of
pointing behaviour and the stages preceding it. We are con-
tinuing with the later stages in the developmental progression,
including the recognition of pointing from other agents and the
transition to linguistic communication. Work on these aspects
is ongoing.

We have implemented a neurally-inspired reaching/grasping
model for a 7 DoF tactile sensing robot hand (Schunk GmbH
& Co.) as part of the ROSSI project. The schema system is
in the process of being integrated with this so that a wider
range of possible actions and gestures may be investigated.
In this configuration rather than dealing with the vision and
motor system directly the schema system talks to an affordance
based memory which processes object features and determines
the appropriate joint configuration for grasping them, meaning
the schema system can continue to operate at a fairly high,
symbolic level while the affordance memory deals with the
low level joint configuration in more detail. This system also
has the capacity to recognise human hand positions via a
data glove, which provides an ability to imitate humans and
will allow us to determine more accurately when a human
is pointing at an object. Schema learning adds a capacity for
temporal reasoning and goal directed behaviour that is lacking
in the current affordance based grasp system.

There is also the potential for further work focusing upon
one robot having learnt this process with a human teacher and
then going on to teach a second robot in a similar manner.
This could be further extended to look at the implications on
a larger population of robots and how social meanings might
adapt due to slight changes in the teaching process from one
robot to another, following a similar methodology to Steels,
et al. [23].

In the current system the robot has no mechanism for
perceiving the presence of another agent as there is assumed to
always be a human present. If this facility were to be added
in the future it would allow the robot to discover in which
scenarios social acts are likely to be successful.
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Abstract—In this paper we introduce PSchema, a framework
for Piagetian schema learning which allows for the direct use of
symbolic schema learning in a robotic environment. We show the
benefit of a developmental progression to aid in the learning of the
system and introduce a generalisation mechanism which further
increases the capabilities of these techniques. Using a robotic arm
we demonstrate the system’s ability to learn to touch objects
placed in front of it and how it can represent the knowledge
gained from this in a manner suitable for continuous on-line
learning. We then go on to demonstrate how these mechanisms
can be used to provide a framework for the learning of language,
grounded in the robot’s sensory perception of the world.

Index Terms—Embodied Cognition, Language Acquisition,
Grounding of Knowledge and Representations, Developmental
Learning

I. INTRODUCTION

Drescher [1] suggested a constructivist approach to learning
based on Piagetian ideas using the notion of ‘schemas’.
Schemas are units of knowledge associating perceptions, ac-
tions and predictions. If the environment is perceived to be
in a certain state then taking an action associated with this
state should cause the environment to change to match the
perceptions anticipated by that schema’s predictions.

In its simplest form a schema consists of a set of pre-
conditions, an action and a set of post-conditions (often
represented in the form pre-conditions/action/post-conditions),
providing a basic forward learning model. These schemas can
then be chained by connecting the post-conditions and pre-
conditions of different schemas together to create a traversable
network representing different world states and the actions
required to move between them.

Holmes and Isbell [4] extended Drescher’s work to enable
the use of continuous value sensors (the original implemen-
tation was limited to binary sensors). They showed that it
was possible to model Partially Observable Markov Decision
Processes (POMDPs) via this mechanism.

Perotto, et al. [10] introduce a Constructivist Anticipatory
Learning Mechanism (CALM), which makes use of a schema
based learning mechanism. The schemas are organised in
a tree hierarchy going from most general to most specific,
making it possible for the system to fall back on more general
solutions if a specific one fails or is unavailable. In contrast to
Holmes and Isbell this system took a property based approach
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Aberystwyth University
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Email: mhl@aber.ac.uk

providing a more direct mapping between the environment
and the agent’s perceptions than a state based representation.
The generalisation mechanism proposed relied primarily on
determining which properties could be ignored in a given
context; by contrast the generalisation mechanism we describe
in section II-E constructs more expressive hypotheses as to
how the robot’s perceptions relate to one another.

Guerin and McKenzie [2] have since used schema learning
in a simple simulated robotic environment, but as yet little
work has been performed using this technique on a physical
robot. They also introduced the concept of superschemas
where multiple schemas can contribute values towards a target
action, this allows the system to combine different classes of
actions to provide new behaviours.

Oudeyer and Kaplan [9] explore the intrinsic motivation of
language learning rooted in play and curiosity, showing how an
intrinsic motivation system can allow a robot to self-organise
its learning process.

Hart [3] applies a developmental approach to an intrinsically
motivated robotic system targeting the learning of visual and
motor skills and considers how these can be learnt in a
generalised form.

The system we describe follows a developmental
progression, the later stages of which are modelled on
the work of Iverson and Goldin-Meadow [5], consisting of
the following stages:

o Motor babbling

e Motor vision mapping

o Failed grasping leading to proto-imperative pointing
o Complementary one word speech with pointing

o Supplementary one word speech with pointing

o Two word sentences

Previously [11] we discussed these developmental stages in
detail and described the progression to stage three, leading
to a robotic system capable of learning to communicate in
the form of simple pointing gestures based around a schema
learning architecture. In this paper we detail the underlying
schema mechanisms that support this progression, and extend
it to encompass early language learning.



II. SCHEMA LEARNING

In the following we highlight the key features of the
PSchema framework and describe in detail the advances
offered by this system.

A. Observation probability tracking

In addition to tracking the probability of a schema’s success
as a whole, PSchema tracks the probability of each individual
observation within that schema. This means that when a chain
of schemas is sought after to complete a given task only the
relevant components are considered. For example, if the robot
has been given the task of moving a block but one of the
potential schemas that could be used to complete this task also
has a chance of knocking a ball off the table in the process,
the likelihood of the ball being displaced can be ignored as it
is not relevant to the completion of the task.

Tracking individual probabilities also allows the system to
cope with sensor noise to a greater degree. Instead of creating
a new schema on the few occasions when sensor noise has
resulted in a different outcome to that expected the system
can store this alternative outcome alongside the expected result
with the appropriate probability for each.

B. Associated observations

Previous schema systems have tracked the pre-conditions
necessary for a schema to be successful and the post-
conditions which should occur after the schema has been
executed. In addition to this we introduce the concept of
‘associated observations’. These are observations that have
been seen to occur frequently alongside a schema but are
neither required for the schema to be executed, nor directly
effected by the action taken. This provides the basis for the
introduction of language into the system, without the need for
any explicit concept of language being preprogrammed into
the system. The process by which this takes place is discussed
alongside the language learning results in section VI-B.

C. Schema excitation

To determine which schema should be executed next we
make use of an intrinsic motivation system, focusing on the
novelty of experiences [9]. When presented with a novel
scenario this leads to executing schemas which are likely to
be relevant to the novel aspects of the scenario and so more
likely to lead to the formation of new schemas representing the
effects of the novel components of the scenario. This gives the
system the ability to form partial plans of action [13] aimed
at expanding its own knowledge of the world.

A schema’s excitation level is found by first comparing
each observation present in the current world state (T) with
all the pre-conditions (¥) and associated observations («) of
that schema, with associated observations being weighted to
have less impact than pre-conditions, in our experiments this
weighting (w) is set to 0.8. This weighting makes it possible
for the primary sensations directly linked to the executability
of a schema to take precedence over the potentially less

relevant associated observations in the early stages of learn-
ing when primary and associated sensations may have been
observed a similar number of times.

Each observation contains a set of different properties, the
amount an observation remembered as part of a schema is
excited by an observation currently present in the environment
is determined by how many of these properties are the same.
For example a simple visual observation may have properties
specifying in which visual field an object is detected and the
colour of that object. This allows the observation of a blue
block in field 7 to excite an observation of the robot’s own
green end effector (a touch sensitive ‘finger’) in that same
field. As such, although the robot has never encountered the
block before it is directed towards schemas that are most likely
to have some relation to it.

The excitation contribution of each observation is then
weighted based on the amount that observation has been
encountered in the past, with more common observations being
less interesting than novel ones. To do this the system tracks
the number of times an observation is given attention (N (x),
where x is an observation). An observation is considered to
have been given attention when it is both being perceived by
the robot and is also referenced in the currently executing
schema. In this way the importance of a perception not directly
related to the current action is not diminished unnecessarily.
For example if the robot is presented with two objects, one
which has been previously seen and one which is new, the new
object will be of more interest and so will be interacted with,
however although the old object is constantly being perceived
during these interactions the number of encounters with it is
not increased. As such the level of excitement provided by
that object remains unchanged while it is not being interacted
with.

If a schema cannot be activated directly from the current
state but instead requires a chain of preceding actions we
decrease the excitation of that schema based on the distance (d)
between the current world state and that schema, this distance
is defined as being the length of the chain of schemas required
to achieve the schema currently being evaluated.

The overall formula for excitation can be expressed as:

0 if unreachable,
d ,
E{U.a}1) = ¢ = = M)
i=|T| j=|c|
T3 N oy :
+w ; Z N(a) ) otherwise.

j=0

ey

A schema is considered unreachable if no chain of pre-

viously learned schemas can be formed to transition from

the current world state to one in which that schema can be
executed.

The schema with the highest excitation value is then selected
for execution.



D. Schema creation

Prior to schema creation an existing schema must have
been executed. This schema is selected based on the excitation
criteria outlined above and so is likely to be the most relevant
action in that context, as it will be the schema with the highest
number of uncommon observations that can still be satisfied
by the current world state.

To decide if a new schema should be created we first take the
relative complement of the current world-state (after schema
execution) with respect to the world-state prior to execution
plus the predicted post-conditions. If the result of this is
anything other than the empty set then an unexpected outcome
has occurred.

If it is found that a new outcome has occurred in con-
junction with a new observation being encountered prior to
the execution of the schema then a new schema is created to
represent this knowledge. If the observations present prior to
the execution of the schema are the same as the pre-conditions
to the schema then the new outcome is added to an existing
schema and the probability of it occurring is tracked. An
illustration of this process can be seen in figure 1.

E. Schema generalisation

Schema generalisation allows the system to go beyond sim-
ply being able to predict and form action plans based around
previously experienced outcomes, giving it the ability to make
informed decisions about scenarios it hasn’t encountered yet
but which are similar to past experiences.

Generalisation is attempted whenever a new schema is
created. The generalisation process first selects the subset of
schemas which appear to be similar to the new schema based
upon them all having the same number of the same type of
observations for their pre-conditions and post-conditions. At
this time associated observations are ignored for the process of
generalisation, but observations can be associated with existing
generalised schemas.

To make it possible to generalise the action component of
the schema we must first be able to describe it in terms of
observations. We achieve this by finding the result of that
action in the simplest known context. The simplest context is
discovered by finding a schema which makes use of that action
and has the least number of pre-conditions, all of which must
be satisfied by the pre-conditions in the schema currently being
generalised over. The action is then converted into a ‘farget
action’ which consists of a list of observations that should be
achieved by any schema implementing that action. An example
of this process can be seen in figure 2.

Once the schema is in a form entirely represented by
observations a simple lifting process takes place, replacing any
identical values that occur in the pre-conditions and in either
the target action, the post-conditions or both with a randomly
generated variable (represented within our system as $x where
x is any alphabetic character). An example of the conversion
from a concrete schema to a generalised schema can be seen
in figure 3.

Given the world state:

World state
Object in field 4

The following schema is selected, due to the visual
observation of an object in field 4 triggering excitation of
any schemas related to observations referencing field 4:

Post-conditions
Finger in field 4

Action
Move to joint
positions 0.43, 0.84

Pre-conditions

This schema is then executed and the process for
determining if a new schema is required is performed:

World state post-execution
Object in field 4
Finger in field 4

Touching

\

World state pre-execution U Predicted post-conditions
Object in field 4
Finger in field 4

4

Relative complement
Touching

As this is not the empty set a new schema will be formed:

Post-conditions
Object in field 4
Finger in field 4

Touching

Action
Move to joint
positions 0.43, 0.84

Pre-conditions

Object in field 4

Fig. 1. An example of the process leading to a new schema being created.

This generalised schema is then tested against all of the
similar schemas that were found in the first stage of the
process. If enough of these are correctly represented by
the generalised schema it is added to the schema memory
(this threshold is set at 75% for the experiments below, no
optimisation of this value has yet been attempted).

When a generalised schema is executed the values from the
current world state are used to populate the variables within
the generalised schema, allowing it to be treated as a normal
schema by all other aspects of the system.

F. Developmental control

The system implements a Lift Constraint, Act, Saturate
(LCAS) [7], [6] loop to artificially constrain the inputs to
the robotic system and so reduce the complexity of the
learning required at each stage of the system’s development.
Constraints are placed upon the system’s sensory input and the
system then operates in this mode until there is little novel



Given the following schema as a potential target for
generalisation:.

Pre-conditions Action Post-conditions

Move to joint
positions 0.43, 0.84

Object in field 4

Object in field 4 Finger in field 4

Touching

We select the following schema based on it sharing the same
action component and having the least number of
pre-conditions. In this example the selected schema has no
pre-conditions indicating that it is applicable in any context.

Post-conditions
Finger in field 4

Action
Move to joint
positions 0.43, 0.84

/

Finger in field 4

Pre-conditions

Post-conditions
Object in field 4
Finger in field 4

Touching

Pre-conditions Action

Object in field 4

The post-condition of that schema is then used as a target
condition to be achieved in place of the original concrete
action. Upon execution of this action the schema most likely
to achieve the target will be found and executed.

Fig. 2. An illustration of the process for forming a target action.

Post-conditions
Object in field 4
Finger in field 4

Touching

Pre-conditions Action

Object in field 4 | Finger in field 4

|

Pre-conditions Action Post-conditions

Object in field $x
Finger in field $x
Touching

Object in field $x | Finger in field $x

Fig. 3. A schema with its concrete action replaced by a target action can
then be converted into a generalised schema.

input being found. A constraint is then lifted, allowing the
system to build upon its knowledge from the previous stage
whilst being exposed to a more complex and detailed view
of the world. In addition to this we simplify the environment
that the robot is initially exposed to, not introducing other
objects for it to interact with until it has had the opportunity
to learn how its own systems function and effect its senses, an
approach similar to the scaffolding [8] performed by parents
when helping children to learn.

In the first stages of learning the robot learns about its
own body and the effects that its movements can have on
its perceptions. After the robot has developed a suitable

representation of this we introduce coloured blocks for the
robot to interact with, learning how it can interact with these
in different locations and the ways in which these objects can
cause different sensations for the robot. Finally we provide the
robot with auditory input, speaking to it as it performs actions
and allowing it to learn the relationship between these words
and its own behaviours.

G. Habituation

It is important to allow the agent to habituate between devel-
opmental stages, this gives the system the opportunity to learn
the different possible outcomes of any schemas that might
not be 100% reliable (for example, due to sensor noise or
poor repeatability of motor actions in the hardware platform).
Without this the system may falsely attribute the sensory
responses it receives that differ from the expected outcomes
as being caused by an unrelated observation introduced during
the later learning stages.

III. EXPERIMENTAL CONFIGURATION
A. Physical robot

The hardware that the system is being tested on consists of
an Adept manipulator arm mounted on a rigid vertical back-
plane. The arm is configured to operate on a two-dimensional
manifold above a table upon which objects can be placed for
it to interact with, the manifold curves up at the extremities
tracing the outer limit of the robot’s work envelope allowing
for pointing towards distant objects. The arm has a single
‘finger’ as an end effector, which has four touch sensors
attached giving directional touch input. This end effector can
be used for interacting with objects by touching them and
pushing them around the work area and for communicating
by pointing at an object.

The vision system consists of an AVT Stingray F-046C
firewire camera, which provides a resolution of 780x580 at up
to 61 frames per second. This is mounted on a pan tilt platform
above the arm looking down on the work space. The system’s
visual space is divided into a number of small circular visual
fields, making the identification of object positions within the
world more discrete. Objects are detected through simple blob
detection and are identified based on their colour.

This hardware setup can be seen in figure 4.

B. Simulated robot

Due to the large running times of some of the exper-
imental scenarios these have been tested in a simulation
environment that has been constructed to roughly model the
physical hardware. It is important to note that the scenarios
requiring simulation are designed to illustrate the benefits of
specific components within the system by their removal. In
the scenarios in which the complete system is active a truly
embodied approach with the previously described physical
robot is employed.

In addition to the arm the environment contains a pan/tilt
vision system, a touch sensitive end effector and a workspace
on which objects can be placed. The simulator provides rigid



Fig. 4. The current hardware configuration.

body physics, allowing for semi-realistic interactions between
the arm and its environment. This simulation environment can
be seen in figure 5. The control software is capable of driving
either the simulated arm or the real arm without modification.
The simulator in use is Gazebo, a part of the Player project.

IV. EXPERIMENT 1: COMPARISON OF PERFORMANCE WITH
AND WITHOUT GENERALISATION AND STAGED LEARNING

The aim in each of the following scenarios is for the robot
to learn to touch an object placed at any location inside its
working area or point to an object if placed outside of the
working area.

Scenarios 2 and 3 exist to highlight the effects of the gen-
eralisation and developmental progression by their removal.
They are not intended as an example of the system as a whole,
but rather to show that without these features the approach
would be too complex for real robotics, however with these
techniques a suitable representation can be achieved quickly
and in a small number of schemas, as demonstrated in the first
scenario.

Fig. 5. The simulation environment showing the arm pointing at an object
placed slightly outside of the robot’s work envelope.

A. Scenario 1: Staged learning with generalisation

In this scenario the robot is given the opportunity to first
learn how the movement of its arm can effect its visual
perception of the world. After this a small blue block is
introduced and the excitation this causes should result in the
robot reaching towards it. Upon contact with the object the
robot will receive a signal from its touch sensor. The object
will then be moved into two or three further positions on
the table, the expectation being that the robot will be able
to generalise these few examples to represent touching the
object anywhere on the table. Once a generalised schema
representing this is created the object will then be moved in to
a position that the robot cannot reach, however in attempting
to touch the object it will form a pointing motion [11], [12]
but will not receive a direct touch sensation, providing a
counter example in which the generalised solution does not
hold. In any cases where counter examples exist that contradict
generalised solutions these are selected instead, allowing the
system to form basic boundaries around generalised schemas.

This scenario has been performed both on the real robot
and within the simulator, to show that the techniques outlined
here translate across to usage on real systems.

B. Scenario 2: Staged learning without generalisation

As in scenario 1 the robot is first allowed to learn the
visual changes caused by the movement of its end effector,
after which an object is introduced. However, unlike the
previous example the system’s ability to generalise from past
experiences is disabled. As a result, to form an equivalent
representation of the world the object must be placed in each
visually distinct location upon the table.

Due to the requirement to place the object in each location
on the table this scenario was only performed in the simulator
where this activity could be automated, greatly reducing the
experimentation time.



C. Scenario 3: Learning without stages, with generalisation

In this scenario the opportunity to learn about the effects
of moving its manipulator prior to interaction with objects is
denied to the robot.

As this scenario required thousands of actions to take place,
in addition to the requirement from scenario 2 in which the
object must be repositioned many times this scenario was also
only performed in simulation.

V. EXPERIMENT 2: LEARNING AND RESPONDING TO
LINGUISTIC COMMANDS

The system receives linguistic input through the use of
speech recognition software, this converts the simple single
word utterances to text tokens which are then passed on to
the schema learning system.

For this experiment the system starts in the end condition of
experiment 1, scenario 1, having learnt a generalised schema
representing touching. An object is then placed in a previously
untested position to ensure that it is exciting enough for the
robot to reach for immediately. When the robot reaches for
the object a human operator says the word ‘touch’. The robot
is then left to ‘play’ with the object until it loses interest and
begins to execute other unrelated schemas. The operator then
says the word ‘touch’ again, and the robot’s attention should
be directed back to the object.

To confirm that this word has been associated with a
generalised mechanism for touching the block is then placed in
another previously untested location. The operator once again
waits until the robot is no longer interested in the object and
then says the word ‘touch’, as before the robot should then
attempt to touch the object.

VI. RESULTS
A. Experiment 1

Scenario Schemas produced
Scenario 1 (Physical Robot) 115
Scenario 1 (Simulated Robot) 227
Scenario 2 (Simulated Robot) 347
Scenario 3 (Simulated Robot) 19244

Scenario Object Placements
Scenario 1 (Physical Robot) 2
Scenario 1 (Simulated Robot) 2
Scenario 2 (Simulated Robot) 100
Scenario 3 (Simulated Robot) 100

The difference in figures for the physical and simulated
robot in scenario 1 is due to the differences in the visual
properties of the two systems. The simulated robot has a much
wider field of view, resulting in a greater number of visual
fields.

It is important to note that while the difference between
scenarios 1 and 2 may not be that great in terms of the number

of schemas created, a roughly similar amount of additional
schemas would need to be added for every new object encoun-
tered by the system due to the lack of generalisation in scenario
2. So while scenario 3 has a far greater number of schemas,
arguably it can represent the robot’s possible interactions with
the world more completely as it can generalise to different
objects without requiring object-specific learning. Additionally
the number of object placements required to train the system
in scenario 2 is much higher as without generalisation the
object must be seen in each position on the table to build
an equivalent representation of object touching, whereas in
scenario 1 only 2 examples are required before the system is
able to generate a valid generalisation.

The large number of schemas and actions required to form a
complete representation in scenario 3 are a result of the robot
not being given the opportunity to learn about the effects of its
actions in a simpler context. As such it incorrectly considers
the presence of an object in a particular field to be a pre-
condition of any possible action (it has never experienced
these actions without an object present). While our chosen
mechanism for avoiding this problem is the use of a series
of learning stages, gradually increasing in complexity, an
alternative solution to this problem might be to make use of a
more complex saliency filter to make additional assumptions
about what may or may-not constitute a pre-condition. How-
ever we believe our staged learning approach offers a more
flexible solution as it allows the system to be trained in a
variety of environments, rather than pre-programming it with
assumptions about the world in advance.

It is worth noting that even when operating with close to
20,000 schemas in scenario 3 the system was still capable of
functioning in real-time.

B. Experiment 2

Figure 6 shows a number of labelled peaks highlighting key
points within the experiment. Peak (a) is the point at which
the object is first introduced, along with the first utterance
of the word ‘touch’. The excitation caused by seeing the
object causes the robot to begin interacting with it. After this
excitation decreases and the robot begins executing schemas
unrelated to the object. Peak (b) shows the excitation increas-
ing again when the word ‘touch’ is heard for a second time,
activating the associated touching schema and directing the
robot’s attention back to the object. At line (c) the object
is moved into a new position, without any linguistic input.
Finally peak (d) is the robot hearing the word ‘fouch’ again
and being directed back to touching the object, now in a new
position.

As mentioned in the section on associated observations
the interactions between the associated observations and the
excitation system can result in some interesting effects when it
comes to attempting to teach the system to respond to spoken
instructions. As can been seen from these results it is only
necessary to give a small number of examples for a word to
be potentially used as a command to direct the robot back to
the action being performed at that time.
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Fig. 6. Top: Level of excitement provided by the most excited schema at

each time-step during the language experiments. Bottom The type of schema
being executed by the system, with the high state representing a touching
schema and the low state being any other schema.

In these experiments we allow the excitation from the
auditory sensations to decay at the same rate as any other
sensation. This means that if the same word is repeated often
enough the robot will temporarily find it less exciting than
other actions, once these actions have been performed (so
lowering their excitation) the word will once again be exciting
enough to trigger the related action. The primary aim of our
system is to direct attention towards actions likely to result
in new learning experiences, not to respond to commands. If
a command driven system was desired the excitation from
auditory input could simply be excluded from the decay
applied to other forms of sensory input.

VII. CONCLUSIONS

The results presented show a clear advantage for the use
of a staged developmental progression when applying schema
learning to robotics in this manner. While it was possible to
learn the same representation without a staged learning ap-
proach, the number of actions required would make this highly
impractical outside of simulation or without a saliency filter,
which would be likely to introduce additional assumptions
about the world. The generalisation mechanism further reduces
the number of actions required to learn the scenario and the
number of schemas necessary to represent it.

The addition of the generalisation mechanism and the con-
cept of associated observations makes simple verb based lan-
guage learning possible. Without the generalisation mechanism
a word would need to be relearnt for each instance of an action

in different contexts, and without the associated observations
language could only be represented as pre-conditions of an

action, meaning that the word would have to be heard before
that action could be carried out.

VIII. FURTHER WORK

The linguistic aspects investigated here only deal with
verbs, which map fairly directly on to entire schemas. Future
work will look at ways in which nouns and adjectives may
be associated with observations or groups of observations
separate from specific schemas, utilising a mechanism similar
to the schema generalisation presented here for associating
words with related components of observations. This will
allow for linguistic input in the form of two word sentences
comprising noun-verb pairs to direct action more precisely.

While the results show an ability to respond to commands
after a single example, the system isn’t exposed to much
linguistic noise that could cause confusion as to the correct
associations. The probability tracking system should allow for
this to be overcome in noisier environments, but this has yet
to be comprehensively tested.
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An Infant Inspired Model of Reaching for a
Humanoid Robot

Mark Lee, James Law Member, IEEE, Patricia Shaw, and Michael Sheldon

Abstract—Infants demonstrate remarkable talents in learning
to control their sensor and motor systems. In particular the abil-
ity to reach to objects using visual feedback requires overcoming
several issues related to coordination, spatial transformations,
redundancy, and complex learning spaces, that are also challenges
for robotics.

The development sequence from tabula rasa to early successful
reaching includes learning of saccade control, gaze control, torso
control, and visually elicited reaching and grasping in 3D space.
This sequence is an essential progression in the acquisition of
manipulation behaviour.

In this paper we outline the biological and psychological
processes behind this sequence, and describe how they can be
interpreted to enable cumulative learning of reaching behaviours
in robots. Our implementation on an iCub robot produces
reaching and manipulation behaviours from scratch in around
2.5 hours. We show snapshots of the learning spaces during this
process, and comment on how timing of stage transition impacts
on learning.

I. INTRODUCTION

EACHING in humans requires the coordination of sev-
Reral different muscle groups controlling the shoulder,
elbow, and wrist. Each of these requires relations to be
made between the range of proprioceptively sensed positions
and the muscle movements needed to reach those positions.
Furthermore, reaching to seen objects requires the space of
possible reach positions to be mapped onto the visual space
perceived by the eye, but this is not straightforward as multiple
arm poses may be available to reach each seen position [1].

These issues pose problems for reach-learning in humanoid
robots. Multiple kinematically dependent joints create large
learning spaces; visual- and joint-spaces are not topograph-
ically related, requiring some kind of transformation; redun-
dancy creates multiple joint poses for reaching to point targets,
and these cause difficulties in generating smooth reaching
trajectories without discontinuities. There have been many
studies and experiments on robot reaching, using both neural
models and Al based methods, e.g. [2], but very few perform
hand/eye coordination learning on complex kinematics in real
time without prior training.

We present an approach to reach learning in humanoid
robotics that draws heavily from the psychological literature
and is inspired by the development and behaviour of very
early infants. We identify several key factors that we consider
important principles to be included in our models:

e Motor babbling. This is spontaneous, internally moti-
vated, action that generates sensorimotor data during
infancy. We show that it is not random activity but is
functional in relating previous action to current and new

sensory-motor patterns. This has close links to the role
of play behaviour.

o Proprioception. Proprioception develops in the pre-natal
stages and, along with motor babbling, is likely to enable
learning of muscle control. Proprioception develops be-
fore vision and visual guidance in reaching, and is a key
factor in learning reaching motions.

o Proximal to distal development. Infant development fol-
lows a cephalocaudal pattern, with eye and head control
appearing before arm and torso. Furthermore, upper arm
control appears before forearm control and grasp learning,
and this sequence has important ramifications.

e Coarse to fine development. Infant abilities appear at first
coarse, and are refined over time. This relates to the
sensory resolution and motor control abilities, as well as
to the development of skills. These embedded constraints
are central to developmental growth.

We view developmental sequences as the key to skill learn-
ing, and various other works show close relevance. Grupen
recognised the cephalocaudal progress of infant growth [3]
and used this in skill development in robotics [4], the ITALK
project has produced a robot development map [S5] similar
to [6], and Asada and colleagues are researching into a
range of robotic models with strong emphasis on human
cognitive growth [7], including the earliest stage possible; fetal
development [8]. Others report on developmental approaches
to reaching, including staged release [9], and experiments with
proximo-distal maturation show that developmental constraints
produce better learning [10].

In the following sections we will describe the development
of reaching in infancy, our approach to implementing a similar
sequence of development on our robotic platform, and give a
series of snapshots showing the data structures built through
the learning process as the robot develops reaching behaviour.

II. A DEVELOPMENTAL MODEL

In the first few months from birth infants orientate to sounds
and attractive visual stimuli. They make ballistic attempts to
reach towards stimulating targets but usually fail to make
contact. This “pre-reaching” behaviour leads on to successful
contact with objects at around 15 weeks [11], [12]. During
this stage it seems that infants do not view the hand during
reaching and vision is only used for target location [13]. This
means that proprioception is important for arm guidance and it
seems that proprioceptive development in the womb provides a
more mature, although possibly incomplete, spatial framework
by the time visual space is first experienced [14].

Limb movements are jerky for much this early period. The
cerebellum appears to be responsible for the production of



smooth action but is very under-developed at birth. This is
believed to be the cause of the marked under-damped oscil-
lations of the arm, which gradually reduce as the cerebellum
matures (over the relatively long period of 2 years).

Before 4 months there is no independent control over the
fingers and grasps are formed only after contact as haptic
experiences. Hand control for grasping develops later than
reaching. This is an example of the cephalocaudal direction
of development that is so prominent in infants [6]. It is also
seen in early reaching, which involves trunk and shoulder
movement, but with fingers locked. This principle of distal
freezing of motor systems is an important feature and is
a significant way of solving the problems associated with
multiple and redundant degrees of freedom.

Only after 8 or 9 months does object size really affect
approach and grasping. From this point the visually sensed
object size modulates the hand aperture. Also at this age, the
shift from proximal to distal control of reaching is started. It
seems this is not solely due to maturational change but the
trajectory of development depends heavily upon experience
and patterns of behaviour [13], [15].

Another contribution to the mastery of arm control is the use
of stereotypical motor patterns that have the effect of reducing
the number of degrees of freedom during the early stages. By
close coupling groups of muscles it is possible to reduce the
number of control variables while producing a set of effective
space covering actions [16]. It has also been observed that
humans have a tendency to avoid extremes in arm configu-
rations, probably because such positions considerably reduce
the options for the next move. Similarly, it has been shown
that people adapt their initial pose and grasp for the final arm
configuration in an action task [17]. For example, subjects
will choose a grasping configuration on a handle such that
their hand ends up in a non-awkward position when releasing
or using the object. These considerations should influence
our model so that any constraining or cost function applied
to reduce the DoF problem should be applied to the final
configuration, not the starting configuration.

From these findings we can summarise some key points:
A view of the hand is much less important when reaching
than when grasping objects or other manipulations. Grasp
learning follows successful reaching and involves learning
object properties (affordances), finger control, tactile and other
experiences. For earlier infants, who don’t have much grasp
control (i.e. use of fingers) proprioception may provide enough
information for reaching actions.

III. EXPERIMENTAL DESIGN

We believe the developmental timeline for infants is an im-
portant tool for modeling and recognize the various constraints
that pertain at different levels of development [6]. In the
following sections we briefly describe how we use constraints
to model the stages described in the previous section, and the
resulting behaviour on the iCub. Due to space constraints the
implementation details for each stage are left to the referenced
papers, although the results described here are unique both
in themselves and in describing the complete reach-learning
process.

Following our earlier experiments, we allow eye/head co-
ordination and eye saccading to develop independently of the
construction of a proprioceptive mapping of limb space. The
eye saccade learning is as described in detail in [18] and
involves head movement compensation. For the growth of the
proprioceptive reach space we arranged that the arm would
have restricted movement on the joints for elbow and upper
arm rotation, and a “rest” position was defined with the arm
retracted and the hand near the head. A reach action consisted
of a movement from the rest location to a specified spatial
target field on or above the table surface in front of the robot.
A range of target locations were generated for the volume of
space around the table by motor babbling in the proprioception
learning stage, (this can be done in simulation and then the
locations can be transferred if motor babbling is considered
unsafe on unconstrained physical hardware).

When sufficient experience has been obtained to build the
gaze and reach maps the independence constraint between
vision and proprioception can be lifted. This facilitates the
interaction of hand and eye in behaviour known as hand
regard activity. This behaviour helps by coordinating visual
gaze space with the proprioceptive space of the arm/hand. Up
to this point progress has been very similar to our previously
described experiments [19], [20], [21].

At this stage of development the robot is able to reach to a
gaze point and look at a hand position. But we notice that the
gaze space is a much larger space than the reach space. This
is mainly because the maximum reach is determined by the
arm length which is much less than the visual range. Another
important point is that the reach and gaze geometry are closely
coupled in the sense that they are both grounded or referential
to a point on the body centre line somewhere near the neck.
This means that, regardless of the configuration of the rest of
the body below the shoulders, if a stimulus is seen to be within
the reachable range of the gaze/reach mappings then it can be
reached. Conversely, if a stimulus is unreachable (i.e. seen
but has no mapping into reach space) it can become possible
to reach it by moving the head/shoulders/arm into a position
where it becomes reachable. This effect can also stimulate the
recruitment of locomotion to achieve distant desirable goals.
However, as locomotion is not yet available, we notice that
torso movement (which develops early, [11]) can be used to
extend the reach space.

For the iCub, torso movements are available as tilt (for-
ward) and rotation (about the body centre line. A torso/visual
mapping can be constructed by noting the effect of torso
movements on the gaze point. This process is exactly the same
as the head/visual mapping which provides gaze compensation
for head movements, and is described in [18]. Now, with a
torso map developed, it is possible to reach to a target in a
two step process: use the torso map to bring the target into
a reachable location in gaze space; then use the gaze/reach
mapping to generate a reach action.

The gaze space is an approximately spherical system with
variables H,V and D, for left-right, up-down, and distance
relative to the centre of the head. An arm configuration can
be defined in terms of an n valued vector, K, for the n
joint angles. Then the reach space is populated with a set of



configurations, K;, each mapped into a gaze point, [h;v;d;].
If motor babbling has produced a sparse but even coverage of
the reach volume then we can find a K; for an unmapped gaze
point [h;v;d;] by interpolation between two near neighbours.
Assume that [hyv1d;] and [hovads) are local to [h;v;d;] and
each are mapped, to K7 and K5 respectively. Then distance
metrics can be computed between the vectors K7 and K5 and
between K and K; and the resulting interpolation ratio is
then applied to the elements of K7 and K5 to obtain a new
configuration K; on the basis of linear piecewise interpolation.
If the new reach location proves to be inaccurate then its
configuration can be stored, together with the mapping to
[h;v:d;], to increase the population density of the reach space.
Eventually there will be sufficient K points in the reach space
that linear interpolation is effective everywhere but the space
is still relatively sparse.

As described in section II, very early reaching behaviour
arises before any hand control has been established and so
we set the hand to be normally open with the fingers flat.
If the front of the hand makes good contact with an object
then an automatic finger close is executed. This provides a
kind of grasp reflex which is maintained, even while the iCub
performs other actions, and is only released by removal of the
object, either by accident or external interaction. Unlike object
contact, the release is not a significant sensed event.

As a result of the earlier hand regard behaviour the system
is able to spatially correlate visual stimuli with hand positions
and vice versa. Thus, when an object is presented for the
first time it is likely to be detected in periphery vision and a
saccade will bring the object to fixation. This fixation location
in gaze space will stimulate a corresponding target for a
reaching action and a reach will be initiated. At this early
stage it would be expected that some reaches would miss the
object and others would contact it. Some of those that make
contact will also grasp the object through the grasp reflex. In
accord with infant stereotypical motor patterns [22] the reach
actions are completed by a return of the arm to a “home”
or quiescent location in proximity to the body. (Such home
positions are equivalent to the mouth, as mouthing is almost
a default behaviour for any object acquired by the hand.)

After a period of early reaching, experience will have been
gained on “disturbing a stimulus” (by moving it or knocking
it completely out of the environment) and “holding” (with
kinesthetic and possibly tactile signals). The next constraint to
be lifted is the reflexive grasp and we do this by allowing the
fingers to close to a given aperture and by activating a “hand
empty” sensor. The hand now has potential for more control;
smaller movements of the fingers can be related to visual
movement or properties of objects and better grasps can be
produced by matching the aperture to objects. Better approach
and poise are also now within new control possibilities. Also
the release of a grasped object now becomes an experienced
event and so this allows objects to be dropped deliberately
and thus the sophisticated skill of moving an object from one
place to another is now available to learn.

In the system as described, the gaze and reach spaces record
the locations of stimuli (objects) and their various properties.
This is in effect a short term memory which remembers objects

during saccades and reaches but a decay function ensures that
after a long period without attention such recent sensory events
are erased. Consequently some form of memory is required to
record actions and experiences that have proved useful and
can be recalled in relevant situations. We have implemented
a schema learning mechanism which provides memory and
motivation functions [23]. A schema encodes the context in
which an action may be performed together with the result of
that action. These schemas can then be chained together to
carry out sequences of actions (for example, reaching toward
an object, grasping it, then moving it to a new location and
finally releasing it). Schemas are selected for execution based
upon an intrinsic motivation algorithm which considers the
novelty of currently experienced stimuli combined with their
similarity to previous experiences, resulting in actions being
selected which are likely to elicit new information about the
world. Example schemas are shown in the next section.

IV. EXPERIMENTAL RESULTS

Following the cephalocaudal development of the infant,
the robot begins by learning the eye movements required to
saccade to a visual target. Learning is conducted through
our developmental framework using constraints to restrict
learning of sensorimotor mappings [24]. Fig.1 shows the learnt
mappings between sensor and motor spaces for making eye
saccades, built up by a process of motor babbling. When a
stimulus is received on the retina, the mapping between the
point of stimulation and the associated motor movement is
followed, triggering a saccade that fixates on the stimulus.

Next, a constraint is released enabling the learning of neck
control. This could be a physical constraint, such as the lack
of sufficient torque in the neck, or an emergent constraint,
such as the prerequisite for accurate eye saccades as a basis
for learning head movements [25]. Fig. 2 shows the learnt
mapping between neck muscles and the impact of these on
the visual space.

The gaze space is represented by combining the motor maps
from the eye and neck system. Each field in the gaze map
corresponds to a relative pan and tilt movement required to
fixate on that field, and contains the eye and neck movements
required to do so. When performing a gaze shift to a target, the
proportion of movement allocated to each system is governed
by the relationship given in [26]. Although the eye and head
joints are not co-located, our experiments indicate that treating
them as such gives sufficient accuracy when performing gaze
shifts. Depth in the gaze space is treated separately, and is
calculated by the vergence angle between the two eyes.

The ego-centric gaze space shares a reference point, the
torso, with the reach space. This supports the mapping of
reaches to gaze direction, but also provides a space in which
to represent the robot’s environment. We use this space as
a visual memory as well as for learning hand-eye coordina-
tion [21].

Reaching movements are mapped onto the gaze space using
a combination of motor babbling and hand regard. Following
the literature on early infant reaching, constraints are imposed
on the type of reaches possible. In the early stages, the
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elbow joint is fixed, and “swiping” movements are made
using the joints in the shoulder. Reaches are initiated from
a “pre-reaching” pose with the hand near the head. This
enables the robot to reach to objects on a line similar to
the gaze direction, and limits collisions with other objects.
The gaze-reach mapping is between two 3-dimensional spaces
corresponding to shoulder proprioception and the gaze space.
Fig. 3 shows a 2-dimensional projection of this mapping.

With constraints limiting elbow movement, the range of
reach distances is very limited. The infant overcomes this by
using movements of the torso to bring objects into range. Fig. 4
shows a mapping of torso rotation to a shift in gaze position.
By rotating the torso the shoulder can be moved closer, or
further, from objects to alter the distance for reaching. As
the reach postures are mapped to vision through the gaze
space, movement of the torso has no impact on eye-hand
coordination.

At this stage, the robot is capable of gazing to objects,
orientating itself to bring the objects into reaching distance,
and making reaching motions toward them from the ‘“pre-
reaching” position. Using the schema learning mechanism it
now starts to build composite actions from these beginnings.

When the robot sees an object it checks for schemas excited
by that stimulus and finds that the most excited schema is one
in which it remembers seeing its own hand in the location the
object now occupies (Fig. 5a). Upon executing this the robot
finds that when an object is present in the location it reaches
its hand towards it receives an unexpected touch sensation.

Post-conditions
Hand at 35,-66

(a) Initially excited schema

Action
Reach to 35,-66

Pre-conditions

Post-conditions
Obj. 1 at 35,-66
Hand at 35,-66
Touching obj. 1

Pre-conditions Action

Obj. 1 at 35,-66 | Reach to 35,-66

(b) Extended schema with new information

Post-conditions
Obj. $a at $x,$y

Hand at $x,$y
Touching obj. $a

Pre-conditions Action

Obj. $a at $x,$y | Reach to $x,$y

(c) Generalised schema

Fig. 5. The creation of a schema representing the act of touching objects

A new schema is then formed to represent this knowledge
(Fig. 5b), which can then be generalised in to a form which
represents reaching out and touching objects in any position
(Fig. 5¢).

The new touching schema is executed a number of times
due to the novelty of the experiences involved. However after
a short while the excitation drops below that of the next most
excited schema, which in this case is the grasping schema.
The grasping schema is excited by the memory of the robot
touching its own hand when performing a grasp with no
objects present, which it is reminded of by the touch sensation
it receives from the object it has reached towards (Fig. 6a).
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Fig. 6. The schema memory learns to go from touching to grasping objects

Executing this whilst touching an object results in the robot
successfully grasping the object and receiving the sensation of
holding an object. A new schema is then created to represent
this new information (Fig. 6b). As with the new touching
schema this grasping representation can also be generalised
as shown in Fig. 6¢, which represents the act of grasping an
object in any location.

In the last stage of our current implementation the touching
and grasping schemas can be chained together to form a plan
of action which allows the robot to reach towards and then
grasp an object at any location (Fig. 7).

This completes the process of attaining visually elicited
reaching. Learning is driven by novelty in the early stages,
giving way to goal directed behaviour only when suitable
goals have been found through ‘play’. The sequence shows
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Fig. 7. Chaining of touching and grasping schemas

cumulative learning of skills from sensorimotor mapping to
action planning. A key indication of the power of this approach
is that the whole sequence described here can be run on the
iCub robot in just 2.5 hours.

A critical issue is the scheduling of the release of con-
straints. In connected work we have investigated how the
timing of constraint release impacts on learning of gaze control
[18]. Those results showed a trade off between timing of
constraint release and the rate of learning. If there are no
sequencing constraints, then sub-systems are allowed to learn
in parallel and learning is found to be slow, due to added
physical and computational complexity. Correspondingly, con-
nectivity between maps is sparse. If constraints remain in
place for a prolonged period, learning of the unconstrained
system is initially fast and connectivity is high, but at the
expense of improvement in the constrained system. However,
learning saturates as the space becomes increasingly explored.
By releasing the constraint on a sub-system at an intermediate



time, learning of mappings in both systems is increased.
Preliminary results suggest that the optimal time to release
a constraint to maximise learning depends on the interaction
of the codependent learning rates of the systems involved. This
is a matter for further investigation.

V. CONCLUSIONS

We have described the nature of development of reaching
in human infancy, and how stages in the development provide
useful insights for learning to reach in humanoid robotics. We
have taken these ideas and implemented them on a robotic plat-
form using our framework for developmental learning. Results
show snapshots of the sensorimotor mappings and schemas
learnt along the developmental trajectory in a cephalocaudal
manner from making eye saccades to reaching and grasping.
The work shows the value of several principles we draw from
the developmental literature.

Motor babbling is a key element in learning. The limited
abilities of the infant mean that goal-driven learning is absent
or restricted, and intrinsic activity, in the form of motor
babbling, plays a significant role in early development. But
babbling, which has close links to play behaviour, is more
than random behaviour, generating vital sensorimotor data and
rehearsing prior action and experience.

Proprioceptive space is an important and under-rated per-
ceptual substrate in early learning. Before vision has developed
sufficiently, proprioception provides the main feedback on
limb positioning. This allows limb movements to be learnt,
to some extent, prenatally. Once vision has matured, motions
learnt proprioceptively can be refined with visual feedback.

Certain abilities, such as gaze control, must be refined be-
fore others, such as reaching. This is manifest in the cephalo-
caudal sequence of development. Furthermore, constraining
distal joints until control over proximal ones has been learnt,
structures the learning task. In this case, by restricting motion
at the elbow joint the robot is able to learn shoulder control
with a straightforward mapping.

The resolution of sensor and motor abilities in the infant
are initially coarse, and gradually become finer with neural
development and learning. Viewing this phenomena in terms of
constraints allows us to reflect the developmental trajectory in
robotic systems. As the robot masters coarse abilities, relevant
constraints can be lifted to allow further refinement.

Using these lessons from human development we have built
a robotic system that learns to reach in a way that overcomes
many of the hurdles to humanoid reaching. Our experiments
can be seen to expose some of the “logic” that appears to
be behind the infant’s development in early sensory-motor
learning. We believe this continued approach will offer further
valuable models and solutions for robotics.
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Abstract

In this paper we investigate a robotic implementation of a set of experiments previously
performed on human participants. These experiments were part of a psychological study looking
at the effects of peripersonal and extrapersonal space on reactions to different classes of verbs.
We then present two hypotheses based upon our robotic tests that may relate to the processes
occurring within the human brain.

1 Introduction

Ambrosini, et al. previously investigated the effect of the spatial position of objects in relation to
verbs [1]. They found that when subjects heard a word relating to functional use or manipulation
of an object that was within the subject’s own peripersonal space that reaction times would
be shorter than when hearing similar verbs paired with an object that was in the subject’s
extrapersonal space. In contrast, words relating to observation of or pointing at an object
resulted in similar reaction times, regardless of whether the object was in the peripersonal or
extrapersonal space of the subject.

In this paper we attempt to reproduce this in a robotic setting, making use of a developmental
schema learning framework that we have been using to investigate potential methods for the
emergence of communication in robots, following a similar developmental progression to that
found in human infants [11]. Based upon our robotic results we then suggest two potential
hypotheses to explain the differences in reaction time found in the previous human experiments.

2 Related Research

Pointing in our system emerges as a form of proto-imperative pointing resulting out of failed
grasping behaviour [13, 7]. Proto-imperative pointing is used by a child to indicate an object
of desire to a nearby adult, and typically emerges at around 10-12 months. On average 3
months [2] after the emergence of proto-imperative pointing the child has also learnt to perform
proto-declarative pointing which is used to acquire joint attention on an object with an adult.
Our system does not make this leap to proto-declarative pointing, indeed Masataka suggests
that proto-declarative pointing does not emerge from the same developmental progression as
proto-imperative pointing [9] and Povinelli, et al. [10] show that while chimpanzees raised in
captivity can be trained to perform proto-imperative pointing they do not appear to make the
jump to proto-declarative pointing. As such all pointing performed in the following experiments
is proto-imperative in nature, with the robot expecting its pointing actions to trigger assistance
from nearby humans.



Lee, et al. [6, 5] discuss the use of a Lift Constraint, Act, Saturate (LCAS) loop to artificially
constrain the inputs to the robotic system and so reduce the complexity of the learning required
at each stage of the system’s development. This technique is made use of in the training of
our robot prior to the experimentation stage. Constraints are placed upon the system’s sensory
input and the system then operates in this mode until there is little novel input being found.
A constraint is then lifted, allowing the system to build upon its knowledge from the previous
stage whilst being exposed to a more complex and detailed view of the world. In addition to this
we simplify the environment that the robot is initially exposed to, not introducing other objects
for it to interact with until it has had the opportunity to learn how its own systems function and
effect its senses, an approach similar to the scaffolding [8] performed by parents when helping
children to learn.

The developmental progression followed by the system can be seen in section 3 and is inspired
by the work of Iverson and Goldin-Meadow [4], highlighting pointing as a key stage towards more
complex forms of communication.

The learning within our system is supported by a schema learning framework [12, 3] capable
of forming generalised schemas representing different concepts and associating additional sensory
information (such as the hearing of words) alongside these schemas.

In its simplest form a schema consists of a set of pre-conditions, an action and a set of
post-conditions (often represented in the form pre-conditions/action/post-conditions), provid-
ing a basic forward learning model. These schemas can then be chained by connecting the
post-conditions and pre-conditions of different schemas together to create a traversable network
representing different world states and the actions required to move between them. Schemas are
selected for execution based upon an excitation measure favouring novelty of experience [12].

3 Experimental Method

We first trained a schema memory on a simulated robot within the Gazebo simulator, which
provides a 3D environment with rigid body physics simulation. This can be seen in figure 1. The
simulated robot consists of a robot arm mounted on a vertical backplane. The arm is configured
to operate on a two-dimensional manifold above a table upon which objects can be placed for it
to interact with, the manifold curves up at the extremities tracing the outer limit of the robot’s
work envelope allowing for pointing towards distant objects. The arm has a single ‘finger’ as
an end effector, which has four touch sensors attached giving directional touch input. This end
effector can be used for interacting with objects by touching them and for communicating by
pointing at an object. The simulation also includes a camera looking down on the table from
above the arm in a similar configuration to that of a human head and arms, the vision system
is able to recognise the robot’s own end effector and objects placed on the table.

The system’s visual space is divided into a number of small circular visual fields, making the
identification of object positions within the world more discrete, an illustration of these fields
can be seen in figure 2.

The robot has two fundamental types of action it can perform, joint movements and obser-
vations. Joint movements allow the system to specify a joint configuration that the arm will
then move to, it is out of this type of action that touching and pointing later emerge. Observa-
tion actions cause the robot to focus visually on one field and list the contents of that field (in
addition to any sensory information being received normally). These observations are indicated
visually by displaying an enlarged view of that field, as can be seen in figure 2.



Figure 1: The simulation environment showing the arm pointing at an object placed slightly outside
of the robot’s work envelope.

Observing

Figure 2: Left: The view from the robot’s camera with a visualisation of the visual fields super-
imposed and detected objects highlighted (in this case the robot’s own end-effector). Right: An
example of the robot observing a field containing its own end effector.



The memory is trained following a developmental progression consisting of the following
stages:

3.1 Motor babbling

In this initial stage the robot has had no prior experience of the world or of its own body. It
performs spontaneous motor actions in order to discover the properties of its motor systems and
its anatomical constraints.

3.2 Motor vision mapping

The movements learnt in the previous stage are then mapped to the changes they create in
the robot’s vision system, this allows it to move its arm to touch (or point towards) an object
detected visually.

3.3 Object interaction

The robot is then presented with objects in a number of different positions and the excitation
mechanism guides the robot towards previously performed actions that may be relevant to this
new stimulus. This results in the robot moving its finger into the same field as the object and
receiving a touch sensation. After seeing objects in a few different locations it is able to generalise
this into a schema that represents the concept of touching anything in any position.

3.4 Failed grasping leading to pointing

In attempting to touch objects that lie outside of the work-envelope of the robot it will inciden-
tally perform what looks, to a human observer, like a pointing motion. Through assistance from
a human observer, fetching the indicated object for the robot, the robot’s representation of this
action moves away from being a direct attempt at manipulating the world towards an indirect
effect via external agencies. This could be seen as a very early form of social communication
being incorporated into the robot’s experience.

3.5 Verb learning

The robot is then given auditory input (reduced to a text token by speech recognition software)
whilst it performs actions. This input is directly related to the action being taken, the words
used being ‘touch’, ‘point’ and ‘observe’.

This progression is discussed in more detail in [11], while the schema learning mechanism
used to support this progression is described in [12].

The system is trained to a level whereby it can understand the verbs ‘touch’, ‘observe’ and
‘point’ and can relate them to relevant concepts within its memory. We then transplant this
schema memory into a test framework that provides pre-determined pairs of stimuli consisting
of visual observations and verbs, similar to the pairs used by Ambrosini, et al. in [1]. Having no
capabilities relating to the function of objects this class of verbs is not covered in our experiments.

An object which is visually distinct from those that the system had previously been trained
on is presented, either inside the peripersonal space or inside the extrapersonal space. Along
side this visual stimulus a word is heard, either ‘touch’, ‘observe’ or ‘point’. We then record the
schemas or chains of schemas most strongly activated by each pairing.



4 Results

We presented the system with visual information relating to an object and its position paired
with one of the three verbs previously listed. We then looked at the schemas or chains of schemas
selected for each position/verb combination.

In each of the examples below the schema displayed is the final form of the schema as
determined by the schema learning framework. In each case they start off as more general
schemas which are then made into schemas specific to the current world state based on the
system’s current observations of the world.

Figure 3 shows the result of the system being presented with an object in the peripersonal
space and hearing the word ‘observe’, an observation schema relating to the field the object
is in is then selected. In this schema the system expects that if it focuses its attention on field
23 (the field containing the object) it will then experience both the sensation of observing that
field and of observing the object contained within.

Pre-conditions Action Post-conditions
Observe field 23 Object in field 23

Object 5 in field 23 Observing field 23
Observing object 5

Figure 3: Object is placed in peripersonal space and the word ‘observe’ is heard.

Figure 4 shows the result of the system being presented with an object in the extrapersonal
space and hearing the word ‘observe. As with the previous pairing an observation schema
relating to the field containing the object is selected, showing that no distinction is made between
peripersonal and extrapersonal space when performing observation actions.

Pre-conditions Action Post-conditions
Observe field 87 | Object in field 87

Object 5 in field 87 Observing field 87
Observing object 5

Figure 4: Object is placed in extrapersonal space and the word ‘observe’ is heard.

Figure 5 shows the result of the system being presented with an object in the extrapersonal
space and hearing the word ‘point’ a typical pointing schema is selected. The system selects
a schema which would result in it pointing at the object with the expectation that another
agent may move it into a position closer to the robot (in this case field 54, as this is where the
object has been placed most frequently during the earlier training phase). The robot has this
expectation because it has learnt to point proto-imperatively, and so views this gesture as being
a request for the object to be moved.

Pre-conditions Action Post-conditions
. . Move to joint Object in field 54
Object 5 in field 87 configuration 1.39, 0.00 | Finger in field 87

Figure 5: Object is placed in extrapersonal space and the word ‘point’ is heard.



Figure 6 shows the result of the system being presented with an object in the peripersonal
space and hearing the word ‘touch’. The system selects a schema appropriate to touching
the object with the expectation that it will receive a touch sensation after moving to a joint
configuration that will result in its finger being in the same visual position as the object.

Pre-conditions Action Post-conditions
Move to joint Object in field 32

Object in field 32 | configuration 0.87, 2.26 | Finger in field 32
Touching

Figure 6: Object is placed in peripersonal space and the word ‘touch’ is heard.

Figure 7 shows the result of the system being presented with an object in the extrapersonal
space and hearing the word ‘¢touch’. In this case the most relevant schema to the given stimuli
is found to be impossible to execute in the current world state due to its pre-conditions (of the
object being reachable) not being met. The system resolves this by finding a chain of actions
which will make it possible to achieve the desired goal of touching the object. It does this by
first selecting a pointing schema which it believes will result in the object being moved into a
location in which it can then be touched. This belief is due to the robot having learnt to point
proto-imperatively, using pointing as a requesting action for an object which another agent may
then fetch for it.

Pre-conditions Action Post-conditions
. . Move to joint Object in field 54
Object 5 in field 87 configuration 1.39, 0.00 | Finger in field 87

e

Pre-conditions Action Post-conditions
Move to joint Object in field 54

Object in field 54 | configuration 1.75, 1.92 | Finger in field 54
Touching

Figure 7: Object is place in extrapersonal space and the word ‘touch’ is heard.

5 Conclusions

The results above suggest two potential hypotheses for the differences in reaction time found by
Ambrosini, et al. We do not believe these two hypotheses to necessarily be mutually exclusive.

5.1 Hypothesis I: Planning/Simulation

The selected schema plan shown in figure 7 indicates that when the system is presented with an
object that is in its extrapersonal space and is asked to touch that object it forms a chain of
schemas which would allow it to perform the requested action. It is possible that the increased
reaction time seen in the human experiments when presenting an object in extrapersonal space
paired with a functional or manipulative verb is caused by the brain evaluating possible courses
of action that may resolve the problem of it being out of reach.



While adult humans may not typically tend to point proto-imperatively as our robot does,
they do have a range of other potential actions that serve the same purpose (requesting the
object verbally, moving their body closer to the object, using other objects as tools to reach the
target object, etc.) which could be being partially activated as part of a planning/simulation
process within the brain.

5.2 Hypothesis II: Past Experience

The robot has prior experience of having successfully touched objects which are within its periper-
sonal space as well as experience of having failed to touch objects which are in its extrapersonal
space (as would a human). When considered from a connectionist perspective it could be sug-
gested that this might lead to a stronger/more direct neural connection between the areas of the
motor-vision map which represent the peripersonal space with the concept of touching or ma-
nipulating an object, than between the areas representing extrapersonal space and the touching
or manipulating of an object.

However the results from Ambrosini, et al. indicate no significant difference in reaction
time between pointing in peripersonal and extrapersonal space, while pointing is a gesture more
strongly associated with distant objects (although not exclusively). This may suggest that there
is more going on than simply differences in the strength of neural connections based on prior
experiences.

6 Further Work

It may be possible to strengthen or rule out the case for hypothesis I by reproducing the original
human experiments whilst making use of brain imaging techniques to identify any increased
activity related to planning when hearing functional or manipulative verbs alongside objects in
the extrapersonal space as opposed to those same verbs heard with an object in the peripersonal
space.
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