3 research outputs found
Hydrology and oxygen addition drive nutrients, metals, and methylmercury cycling in a hypereutrophic water supply reservoir
Impaired water quality in Mediterranean climate reservoirs is mainly associated with eutrophication and internal nutrient loading. To improve water quality in hypereutrophic Hodges Reservoir, California, United States, a hypolimnetic oxygenation system (HOS), using pure oxygen gas, was implemented in 2020. This study encompasses 3 years of pre-oxygenation data (2017–2019) and 2 years of post-oxygenation data (2020–2021) to understand the cycling of nutrients, metals, and mercury in the reservoir. During the wet year of 2017, mildly reduced conditions lasted until mid-summer in the enlarged reservoir. Nutrients and metals were seen in the hypolimnion including ammonia (~2 mg-N/L), manganese (~0.5 mg/L), phosphate (~0.5 mg-P/L), and sulfide (~10 mg/L). Production of methylmercury (MeHg), an important bioaccumulative toxin, was favored from April to June with a hypolimnetic accumulation rate of around 200 ng/m2·d. In contrast, the dry year of 2018 exhibited higher hypolimnetic concentrations of ammonia (~4 mg-N/L), manganese (~1 mg/L), phosphate (>0.5 mg-P/L), and sulfide (>15 mg/L). The rapid onset of highly reduced conditions in 2018 corresponded with low MeHg hypolimnetic accumulation (~50 ng/m2·d). It seems that mildly reduced conditions were associated with higher MeHg accumulation, while sulfidic, reduced conditions impaired inorganic mercury bioavailability for MeHg production and/or promoted microbial demethylation. Sulfide also appeared to act as a sink for iron via FeS precipitation, and potentially for manganese via MnS precipitation or manganese coprecipitation with FeS. Mass flux estimates for 2017–2019 indicate that much of the nutrients that accumulated in the hypolimnion moved via turbulent diffusion into the epilimnion at loading rates far exceeding thresholds predicting eutrophic conditions. After oxygenation in 2020–2021, the reservoir water column was highly oxidized but showed a lack of thermal stratification, suggesting reservoir operations in combination with HOS implementation inadvertently mixed the water column in this relatively shallow reservoir. Post-oxygenation, concentrations of ammonia, phosphate, manganese, and mercury in bottom waters all decreased, likely in response to oxidized conditions. Oxygenated bottom waters exhibited elevated nitrate, a byproduct of ammonia nitrification, and iron, a byproduct of FeS oxidation, indicating a lake-wide response to oxygenation
Recommended from our members
Mental health benefits of natural spaces and barriers to access in the age of COVID-19
The COVID-19 pandemic has negatively impacted the mental health of millions of Americans, with communities of color, low-income communities, and women experiencing the greatest hardships of the pandemic. Additional stress has been added due to concern for personal and familial health, unequal access to healthcare, increased financial hardship, and unprecedented uncertainty for daily life. Natural spaces have been proven to deliver positive mental health benefits, including reducing feelings of depression and anxiety. Because access to these benefits is inequitable, the authors recommend replicating existing successful programs and movements for guidance in eliminating barriers. Programs such as Yosemite National Park’s bus system reduce structural barriers, and initiatives such as Check Out Washington, both discussed below, reduce financial barriers. In addition, reforming law enforcement operations within natural spaces will increase the perceived safety and comfort of people of color in these areas. The proposed recommendations serve as calls to action to improve access natural spaces so that all people may benefit from them