2,538 research outputs found

    Weak ferromagnetism and field-induced spin reorientation in K2V3O8

    Full text link
    Magnetization and neutron diffraction measurements indicate long-range antiferromagnetic ordering below TN=4 K in the 2D, S=1/2 Heisenberg antiferromagnet K2V3O8. The ordered state exhibits ``weak ferromagnetism'' and novel, field-induced spin reorientations. These experimental observations are well described by a classical, two-spin Heisenberg model incorporating Dzyaloshinskii-Moriya interactions and an additional c-axis anisotropy. This additional anisotropy can be accounted for by inclusion of the symmetric anisotropy term recently described by Kaplan, Shekhtman, Entin-Wohlman, and Aharony. This suggests that K2V3O8 may be a very unique system where the qualitative behavior relies on the presence of this symmetric anisotropy.Comment: 5 pages, 4 ps figures, REVTEX, submitted to PR

    Thermal Phase Variations of WASP-12b: Defying Predictions

    Get PDF
    [Abridged] We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 micron. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large amplitude phase variations, combined with the planet's previously-measured day-side spectral energy distribution, is indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared indicate that the atmospheric opacity is greater at 3.6 than at 4.5 micron, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies. We do not detect ellipsoidal variations at 3.6 micron, but our parameter uncertainties -estimated via prayer-bead Monte Carlo- keep this non-detection consistent with model predictions. At 4.5 micron, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planet's elongated shape, these variations imply a 3:2 ratio for the planet's longest:shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 micron ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best fit 4.5 micron transit depth becomes commensurate with the 3.6 micron depth, within the uncertainties. The relative transit depths are then consistent with a Solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 micron eclipse depth, consistent with a Solar composition and modest temperature inversion. We suggest future observations that could distinguish between these two scenarios.Comment: 19 pages, 10 figures, ApJ in press. Improved discussion of gravity brightenin

    An Electron Spin Resonance Selection Rule for Spin-Gapped Systems

    Full text link
    The direct electron spin resonance (ESR) absorption between a singlet ground state and the triplet excited states of spin gap systems is investigated. Such an absorption, which is forbidden by the conservation of the total spin quantum number in isotropic Hamiltonians, is allowed by the Dzyaloshinskii-Moriya interaction. We show a selection rule in the presence of this interaction, using the exact numerical diagonalization of the finite cluster of the quasi-one-dimensional bond-alternating spin system. The selection rule is also modified into a suitable form in order to interpret recent experimental results on CuGeO3_3 and NaV2_2O5_5.Comment: 5 pages, Revtex, with 6 eps figures, to appear in J. Phys. Soc. Jpn. Vol. 69 No. 11 (2000

    Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects

    Get PDF
    We revisit a problem of Dzyaloshinsky-Moriya antisymmetric exchange coupling for a single bond in cuprates specifying the local spin-orbital contributions to Dzyaloshinsky vector focusing on the oxygen term. The Dzyaloshinsky vector and respective weak ferromagnetic moment is shown to be a superposition of comparable and, sometimes, competing local Cu and O contributions. The intermediate oxygen 17^{17}O Knight shift is shown to be an effective tool to inspect the effects of Dzyaloshinsky-Moriya coupling in an external magnetic field. We predict the effect of strongstrong oxygen weak antiferromagnetism in edge-shared CuO2_2 chains due to uncompensated oxygen Dzyaloshinsky vectors. Finally, we revisit the effects of symmetric spin anisotropy, in particular, those directly induced by Dzyaloshinsky-Moriya coupling.Comment: 12 pages, 2 figures, submitted to JET

    Dzyaloshinskii-Moriya interaction in NaV2_2O5_5: a microscopic study

    Full text link
    We present a unified account of magnetic exchange and Raman scattering in the quasi-one-dimensional transition-metal oxide NaV2_2O5_5. Based on a cluster-model approach explicit expressions for the exchange integral and the Raman-operator are given. It is demonstrated that a combination of the electronic-structure and the Dzyaloshinskii-Moriya interaction, allowed by symmetry in this material, are responsible for the finite Raman cross-section giving rise to both, one- and two-magnon scattering amplitudes.Comment: 7 pages, 1 figur

    Magnetic anisotropy and low-energy spin waves in the Dzyaloshinskii-Moriya spiral magnet Ba_2 Cu Ge_2 O_7

    Full text link
    New neutron diffraction and inelastic scattering experiments are used to investigate in detail the field dependence of the magnetic structure and low-energy spin wave spectrum of the Dzyaloshinskii-Moriya helimagnet Ba_2 Cu Ge_2 O_7. The results suggest that the previously proposed model for the magnetism of this compound (an ideal sinusoidal spin spiral, stabilized by isotropic exchange and Dzyaloshinskii-Moriya interactions) needs to be refined. Both new and previously published data can be quantitatively explained by taking into account the Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) term, a special magnetic anisotropy term that was predicted to always accompany Dzyaloshinskii-Moriya interactions in insulators.Comment: 30 pages, 10 figures, submitted to PR

    Effects of anisotropic spin-exchange interactions in spin ladders

    Full text link
    We investigate the effects of the Dzialoshinskii-Moriya (DM) and Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) interactions on various thermodynamic and magnetic properties of a spin 1/2 ladder. Using the Majorana fermion representation, we derive the spectrum of low energy excitations for a pure DM interaction and in presence of a superimposed KSEA interaction. We calculate the various correlation functions for both cases and discuss how they are modified with respect to the case of an isotropic ladder. We also discuss the electron spin resonance (ESR) spectrum of the system and show that it is strongly influenced by the orientation of the magnetic field with respect to the Dzialoshinskii-Moriya vector. Implications of our calculations for NMR and ESR experiments on ladder systems are discussed.Comment: 14 pages, 4 eps figures, corrected calculation of NMR rate (v3

    Structure of the exotic spin-flop states in BaCu2Si2O7

    Full text link
    The unusual 2-stage spin flop transition in BaCu2Si2O7 is studied by single-crystal neutron diffraction. The magnetic structures of the various spin-flop phases are determined. The results appear to be inconsistent with the previously proposed theoretical explanation of the 2-stage transition.Comment: 6 pages 5 figure
    corecore